18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bioactive glasses—structure and properties.

      1
      Angewandte Chemie (International ed. in English)
      Wiley
      bioactive glasses, bone regeneration, implant materials

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bioactive glasses were the first synthetic materials to show bonding to bone, and they are successfully used for bone regeneration. They can degrade in the body at a rate matching that of bone formation, and through a combination of apatite crystallization on their surface and ion release they stimulate bone cell proliferation, which results in the formation of new bone. Despite their excellent properties and although they have been in clinical use for nearly thirty years, their current range of clinical applications is still small. Latest research focuses on developing new compositions to address clinical needs, including glasses for treating osteoporosis, with antibacterial properties, or for the sintering of scaffolds with improved mechanical stability. This Review discusses how the glass structure controls the properties, and shows how a structure-based design may pave the way towards new bioactive glass implants for bone regeneration.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: not found
          • Article: not found

          THE ATOMIC ARRANGEMENT IN GLASS

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The story of Bioglass.

            Historically the function of biomaterials has been to replace diseased or damaged tissues. First generation biomaterials were selected to be as bio-inert as possible and thereby minimize formation of scar tissue at the interface with host tissues. Bioactive glasses were discovered in 1969 and provided for the first time an alternative; second generation, interfacial bonding of an implant with host tissues. Tissue regeneration and repair using the gene activation properties of Bioglass provide a third generation of biomaterials. This article reviews the 40 year history of the development of bioactive glasses, with emphasis on the first composition, 45S5 Bioglass, that has been in clinical use since 1985. The steps of discovery, characterization, in vivo and in vitro evaluation, clinical studies and product development are summarized along with the technology transfer processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W.

              High-strength bioactive glass-ceramic A-W was soaked in various acellular aqueous solutions different in ion concentrations and pH. After soaking for 7 and 30 days, surface structural changes of the glass-ceramic were investigated by means of Fourier transform infrared reflection spectroscopy, thin-film x-ray diffraction, and scanning electronmicroscopic observations, in comparison with in vivo surface structural changes. So-called Tris buffer solution, pure water buffered with trishydroxymethyl-aminomethane, which had been used by various workers as a "simulated body fluid," did not reproduce the in vivo surface structural changes, i.e., apatite formation on the surface. A solution, ion concentrations and pH of which are almost equal to those of the human blood plasma--i.e., Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl- 148.8, HCO3- 4.2 and PO4(2-) 1.0 mM and buffered at pH 7.25 with the trishydroxymethyl-aminomethane--most precisely reproduced in vivo surface structure change. This shows that careful selection of simulated body fluid is required for in vitro experiments. The results also support the concept that the apatite phase on the surface of glass-ceramic A-W is formed by a chemical reaction of the glass-ceramic with the Ca2+, HPO4(2-), and OH- ions in the body fluid.
                Bookmark

                Author and article information

                Journal
                Angew. Chem. Int. Ed. Engl.
                Angewandte Chemie (International ed. in English)
                Wiley
                1521-3773
                1433-7851
                Mar 27 2015
                : 54
                : 14
                Affiliations
                [1 ] Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743 Jena (Germany) http://www.brauergroup.uni-jena.de. delia.brauer@uni-jena.de.
                Article
                10.1002/anie.201405310
                25765017
                1cdcc655-5723-4db5-a8b2-20779bba5e41
                History

                bioactive glasses,bone regeneration,implant materials

                Comments

                Comment on this article