41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model. Pregnant females were exposed to diluted (1 mg/m3), filtered DE (NP diameter ≈ 69 nm) or clean air (controls) for 2 h/day, 5 days/week by nose-only exposure (total exposure: 20 days in a 31-day gestation). Results DE exposure induced early signs of growth retardation at mid gestation with decreased head length (p = 0.04) and umbilical pulse (p = 0.018). Near term, fetal head length (p = 0.029) and plasma insulin and IGF1 concentrations (p = 0.05 and p = 0.019) were reduced. Placental function was also affected, with reduced placental efficiency (fetal/placental weight) (p = 0.049), decreased placental blood flow (p = 0.009) and fetal vessel volume (p = 0.002). Non-aggregated and “fingerprint” NP were observed at various locations, in maternal blood space, in trophoblastic cells and in the fetal blood, demonstrating transplacental transfer. Adult female offspring were bred with control males. Although fetoplacental biometry was not affected near term, second generation fetal metabolism was modified by grand-dam exposure with decreased plasma cholesterol (p = 0.008) and increased triglyceride concentrations (p = 0.015). Conclusions Repeated daily gestational exposure to DE at levels close to urban pollution can affect feto-placental development in the first and second generation. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0151-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Health Effects of Fine Particulate Air Pollution: Lines that Connect

          Efforts to understand and mitigate thehealth effects of particulate matter (PM) air pollutionhave a rich and interesting history. This review focuseson six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There hasbeen substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidiity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonaryhealth. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ambient air pollution and low birthweight: a European cohort study (ESCAPE).

            Ambient air pollution has been associated with restricted fetal growth, which is linked with adverse respiratory health in childhood. We assessed the effect of maternal exposure to low concentrations of ambient air pollution on birthweight. We pooled data from 14 population-based mother-child cohort studies in 12 European countries. Overall, the study population included 74 178 women who had singleton deliveries between Feb 11, 1994, and June 2, 2011, and for whom information about infant birthweight, gestational age, and sex was available. The primary outcome of interest was low birthweight at term (weight <2500 g at birth after 37 weeks of gestation). Mean concentrations of particulate matter with an aerodynamic diameter of less than 2·5 μm (PM2·5), less than 10 μm (PM10), and between 2·5 μm and 10 μm during pregnancy were estimated at maternal home addresses with temporally adjusted land-use regression models, as was PM2·5 absorbance and concentrations of nitrogen dioxide (NO2) and nitrogen oxides. We also investigated traffic density on the nearest road and total traffic load. We calculated pooled effect estimates with random-effects models. A 5 μg/m(3) increase in concentration of PM2·5 during pregnancy was associated with an increased risk of low birthweight at term (adjusted odds ratio [OR] 1·18, 95% CI 1·06-1·33). An increased risk was also recorded for pregnancy concentrations lower than the present European Union annual PM2·5 limit of 25 μg/m(3) (OR for 5 μg/m(3) increase in participants exposed to concentrations of less than 20 μg/m(3) 1·41, 95% CI 1·20-1·65). PM10 (OR for 10 μg/m(3) increase 1·16, 95% CI 1·00-1·35), NO2 (OR for 10 μg/m(3) increase 1·09, 1·00-1·19), and traffic density on nearest street (OR for increase of 5000 vehicles per day 1·06, 1·01-1·11) were also associated with increased risk of low birthweight at term. The population attributable risk estimated for a reduction in PM2·5 concentration to 10 μg/m(3) during pregnancy corresponded to a decrease of 22% (95% CI 8-33%) in cases of low birthweight at term. Exposure to ambient air pollutants and traffic during pregnancy is associated with restricted fetal growth. A substantial proportion of cases of low birthweight at term could be prevented in Europe if urban air pollution was reduced. The European Union. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silica and titanium dioxide nanoparticles cause pregnancy complications in mice.

              The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.
                Bookmark

                Author and article information

                Journal
                Particle and Fibre Toxicology
                Part Fibre Toxicol
                Springer Science and Business Media LLC
                1743-8977
                December 2015
                July 26 2016
                December 2015
                : 13
                : 1
                Article
                10.1186/s12989-016-0151-7
                6352bbdc-cdb0-49af-9c83-44d60192d992
                © 2015
                History

                Comments

                Comment on this article