52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cellular uptake and trafficking of antisense oligonucleotides

      , , , ,
      Nature Biotechnology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding how antisense oligonucleotides get into and around cells could inform design of improved therapies.Understanding how antisense oligonucleotides get into and around cells could inform design of improved therapies.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions.

          Dynamic interactions between proteins comprise a key mechanism for temporal control of cellular function and thus hold promise for development of novel drug therapies. It remains technically challenging, however, to quantitatively characterize these interactions within the biologically relevant context of living cells. Although, bioluminescence resonance energy transfer (BRET) has often been used for this purpose, its general applicability has been hindered by limited sensitivity and dynamic range. We have addressed this by combining an extremely bright luciferase (Nanoluc) with a means for tagging intracellular proteins with a long-wavelength fluorophore (HaloTag). The small size (19 kDa), high emission intensity, and relatively narrow spectrum (460 nm peak intensity) make Nanoluc luciferase well suited as an energy donor. By selecting an efficient red-emitting fluorophore (635 nm peak intensity) for attachment onto the HaloTag, an overall spectral separation exceeding 175 nm was achieved. This combination of greater light intensity with improved spectral resolution results in substantially increased detection sensitivity and dynamic range over current BRET technologies. Enhanced performance is demonstrated using several established model systems, as well as the ability to image BRET in individual cells. The capabilities are further exhibited in a novel assay developed for analyzing the interactions of bromodomain proteins with chromatin in living cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism.

            AS1411 is a first-in-class anticancer agent, currently in phase II clinical trials. It is a quadruplex-forming oligodeoxynucleotide that binds to nucleolin as an aptamer, but its mechanism of action is not completely understood. Mechanistic insights could lead to clinically useful markers for AS1411 response and to novel targeted therapies. Previously, we proposed a model where cell surface nucleolin serves as the receptor for AS1411, leading to selective uptake in cancer cells. Here, we compare uptake of fluorophore-labeled AS1411 (FL-AS1411) in DU145 prostate cancer cells (sensitive to AS1411) and Hs27 nonmalignant skin fibroblasts (resistant to AS1411). Uptake of FL-AS1411 occurred by endocytosis in both cell types and was much more efficient than an inactive, nonquadruplex oligonucleotide. Unexpectedly, uptake of FL-AS1411 was lower in cancer cells compared with Hs27 cells. However, the mechanism of uptake was different, occurring by macropinocytosis in cancer cells, but by a nonmacropinocytic pathway in Hs27 cells. Additionally, treatment of various cancer cells with AS1411 caused hyperstimulation of macropinocytosis, provoking an increase in its own uptake, whereas no stimulation was observed for nonmalignant cells. Nucleolin was not required for initial FL-AS1411 uptake in DU145 cells but was necessary for induced macropinocytosis and FL-AS1411 uptake at later times. Our results are inconsistent with the previous mechanistic model but confirm that nucleolin plays a role in mediating AS1411 effects. The data suggest a new model for AS1411 action as well as a new role for nucleolin in stimulating macropinocytosis, a process with potential applications in drug delivery. ©2010 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes

              Single-stranded antisense oligonucleotides (SSOs) are used to modulate the expression of genes in animal models and are being investigated as potential therapeutics. To better understand why synthetic SSOs accumulate in the same intracellular location as the target RNA, we have isolated a novel mouse hepatocellular SV40 large T-antigen carcinoma cell line, MHT that maintains the ability to efficiently take up SSOs over several years in culture. Sequence-specific antisense effects are demonstrated at low nanomolar concentrations. SSO accumulation into cells is both time and concentration dependent. At least two distinct cellular pathways are responsible for SSO accumulation in cells: a non-productive pathway resulting in accumulation in lysosomes, and a functional uptake pathway in which the SSO gains access to the targeted RNA. We demonstrate that functional uptake, as defined by a sequence-specific reduction in target mRNA, is inhibited by brefeldin A and chloroquine. Functional uptake is blocked by siRNA inhibitors of the adaptor protein AP2M1, but not by clathrin or caveolin. Furthermore, we document that treatment of mice with an AP2M1 siRNA blocks functional uptake into liver tissue. Functional uptake of SSO appears to be mediated by a novel clathrin- and caveolin-independent endocytotic process.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Nature
                1087-0156
                1546-1696
                February 27 2017
                February 27 2017
                : 35
                : 3
                : 230-237
                Article
                10.1038/nbt.3779
                36eda8cc-f050-45b2-b735-238608bc648e
                © 2017
                History

                Comments

                Comment on this article