49
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The effects of kidney transplantation on sleep, melatonin, circadian rhythm and quality of life in kidney transplant recipients and living donors.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sleep disturbance is an important medical problem in patients with end-stage renal disease. It might be related to the disruption of the body's circadian clock since nocturnal levels of its key biomarker melatonin are markedly reduced. We aimed at investigating whether a change in renal function due to kidney transplantation or donation would modify sleep, melatonin levels, circadian rhythmicity, and quality of life in kidney transplant recipients (KTR) and living donors (LD).

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The basic physiology and pathophysiology of melatonin.

          Melatonin is a methoxyindole synthesized and secreted principally by the pineal gland at night under normal environmental conditions. The endogenous rhythm of secretion is generated by the suprachiasmatic nuclei and entrained to the light/dark cycle. Light is able to either suppress or synchronize melatonin production according to the light schedule. The nycthohemeral rhythm of this hormone can be determined by repeated measurement of plasma or saliva melatonin or urine sulfatoxymelatonin, the main hepatic metabolite. The primary physiological function of melatonin, whose secretion adjusts to night length, is to convey information concerning the daily cycle of light and darkness to body physiology. This information is used for the organisation of functions, which respond to changes in the photoperiod such as the seasonal rhythms. Seasonal rhythmicity of physiological functions in humans related to possible alteration of the melatonin message remains, however, of limited evidence in temperate areas in field conditions. Also, the daily melatonin secretion, which is a very robust biochemical signal of night, can be used for the organisation of circadian rhythms. Although functions of this hormone in humans are mainly based on correlative observations, there is some evidence that melatonin stabilises and strengthens coupling of circadian rhythms, especially of core temperature and sleep-wake rhythms. The circadian organisation of other physiological functions could depend on the melatonin signal, for instance immune, antioxidative defences, hemostasis and glucose regulation. Since the regulating system of melatonin secretion is complex, following central and autonomic pathways, there are many pathophysiological situations where the melatonin secretion can be disturbed. The resulting alteration could increase predisposition to disease, add to the severity of symptoms or modify the course and outcome of the disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study.

            Few studies have formally compared the predictive value of the blood pressure at night over and beyond the daytime value. We investigated the prognostic significance of the ambulatory blood pressure during night and day and of the night-to-day blood pressure ratio. We did 24-h blood pressure monitoring in 7458 people (mean age 56.8 years [SD 13.9]) enrolled in prospective population studies in Denmark, Belgium, Japan, Sweden, Uruguay, and China. We calculated multivariate-adjusted hazard ratios for daytime and night-time blood pressure and the systolic night-to-day ratio, while adjusting for cohort and cardiovascular risk factors. Median follow-up was 9.6 years (5th to 95th percentile 2.5-13.7). Adjusted for daytime blood pressure, night-time blood pressure predicted total (n=983; p or =0.07). Adjusted for the 24-h blood pressure, night-to-day ratio predicted mortality, but not fatal combined with non-fatal events. Antihypertensive drug treatment removed the significant association between cardiovascular events and the daytime blood pressure. Participants with systolic night-to-day ratio value of 1 or more were older, at higher risk of death, and died at an older age than those whose night-to-day ratio was normal (> or =0.80 to <0.90). In contrast to commonly held views, daytime blood pressure adjusted for night-time blood pressure predicts fatal combined with non-fatal cardiovascular events, except in treated patients, in whom antihypertensive drugs might reduce blood pressure during the day, but not at night. The increased mortality in patients with higher night-time than daytime blood pressure probably indicates reverse causality. Our findings support recording the ambulatory blood pressure during the whole day.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin and human rhythms.

              Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a 'chronobiotic.' Acutely, it increases sleep propensity during 'biological day.' These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.
                Bookmark

                Author and article information

                Journal
                Nephron
                Nephron
                S. Karger AG
                2235-3186
                1660-8151
                2015
                : 129
                : 1
                Article
                000369308
                10.1159/000369308
                25531829
                4948e5ea-8aa3-4a8b-96c6-380a3432769d
                History

                Comments

                Comment on this article