8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Peroxisome proliferator-activated receptor-alpha deficiency protects aged mice from insulin resistance induced by high-fat diet.

      American journal of nephrology
      Aging, Albuminuria, Animals, Blood Glucose, metabolism, Cholesterol, blood, Creatinine, Dietary Fats, administration & dosage, Fasting, Glucose Tolerance Test, Homeostasis, Insulin, Insulin Resistance, Liver, pathology, Male, Mice, Mice, Knockout, Organ Size, PPAR alpha, deficiency

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin resistance is a central feature of the metabolic syndrome and progressively increases with age, resulting in excessively high incidence of type II diabetes in the elderly population. Peroxisome proliferator-activated receptor-alpha (PPARalpha) is widely expressed in insulin target tissues, including those of the liver, kidney, and muscle, where it mediates expression of genes promoting fatty acid beta-oxidation. The aim of this study was to evaluate the potential role of PPARalpha in insulin resistance in aging mice induced by a high-fat diet. We used male PPARalpha knockout (KO) mice and wild-type (WT) littermates that were 18 months old. Animals were fed with a high-fat diet (HFD) for 4 weeks, and metabolic parameters associated with insulin sensitivity were assessed. Following HFD treatment, WT mice showed more severe insulin resistance than did mice lacking the PPARalpha gene, as assessed by both the glucose tolerance test (GTT) and insulin tolerance test (ITT). In addition, WT mice exhibited significantly higher HOMA-IR, plasma total cholesterol levels and urinary albumin-creatinine ratio but less liver weight than did PPARalpha KO mice. These data suggest that PPARalpha gene deficiency may protect aged mice from developing insulin resistance and albuminuria induced by a HFD. 2007 S. Karger AG, Basel

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of insulin resistance in aging.

          We have studied 17 elderly and 27 non-elderly, nonobese subjects (mean age 69+/-1 and 37+/-2 yr, respectively) to assess the mechanisms responsible for the abnormal carbohydrate tolerance associated with aging. Serum glucose and insulin levels were significantly elevated in the elderly subjects compared with the nonelderly subjects during a 75-g oral glucose tolerance test, suggesting an insulin resistant state. Peripheral insulin sensitivity was assessed in both groups using the euglycemic glucose clamp technique during an insulin infusion rate of 40 mU/m(2) per min. Similar steady-state serum insulin levels led to a peripheral glucose disposal rate of 151+/-17 mg/m(2) per min in the elderly compared with a value of 247+/-12 mg/m(2) per min in the nonelderly, thus documenting the presence of insulin resistance in the elderly subjects. Insulin binding to isolated adipocytes and monocytes was similar in the elderly and nonelderly groups (2.34+/-0.33 vs. 2.62+/-0.24% and 5.04+/-1.10 vs. 5.12+/-1.07%), respectively. Thus, insulin resistance in the presence of normal insulin binding suggests the presence of a postreceptor defect in insulin action. This was confirmed by performing additional euglycemic clamp studies using infusion rates of 15 and 1,200 mU/m(2) per min to assess the contours of the dose-response relationship. These studies revealed a 39 and 25% decrease in the glucose disposal rate in the elderly subjects, respectively. The results confirm the presence of a postreceptor defect as well as a rightward shift in the dose-response curve. Insulin's ability to suppress hepatic glucose output was less in the elderly subjects during the 15 mU/m(2) per min insulin infusion (77+/-5 vs. 89+/-4% suppression), but hepatic glucose output was fully and equally suppressed in both groups during the 40 and 1,200 mU/m(2) per min infusion. Finally, a significant inverse relationship was observed between the degree of glucose intolerance in the individual elderly subjects, as reflected by the 2-h serum glucose level during the oral glucose tolerance test, and the degree of peripheral insulin resistance as assessed by the glucose disposal rate during the 40 mU/m(2) per min insulin infusion (r = 0.59, P < 0.01).We conclude that carbohydrate intolerance develops as part of the aging process. This carbohydrate intolerance appears to be the consequence of peripheral insulin resistance caused by a postreceptor defect in target tissue insulin action, which causes both a decrease in the maximal rate of peripheral glucose disposal and a rightward shift in the insulin action dose-response curve. In elderly subjects, the severity of the abnormality in carbohydrate tolerance is directly correlated to the degree of peripheral insulin resistance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Peroxisome Proliferator-activated Receptor α Activators Improve Insulin Sensitivity and Reduce Adiposity

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PPAR- -Null Mice Are Protected From High-Fat Diet-Induced Insulin Resistance

                Bookmark

                Author and article information

                Comments

                Comment on this article