115
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics of Dark-Fly Genome Under Environmental Selections

      G3: Genes|Genomes|Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

          The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular diversity of adaptive convergence.

            To estimate the number and diversity of beneficial mutations, we experimentally evolved 115 populations of Escherichia coli to 42.2°C for 2000 generations and sequenced one genome from each population. We identified 1331 total mutations, affecting more than 600 different sites. Few mutations were shared among replicates, but a strong pattern of convergence emerged at the level of genes, operons, and functional complexes. Our experiment uncovered a set of primary functional targets of high temperature, but we estimate that many other beneficial mutations could contribute to similar adaptive outcomes. We inferred the pervasive presence of epistasis among beneficial mutations, which shaped adaptive trajectories into at least two distinct pathways involving mutations either in the RNA polymerase complex or the termination factor rho.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxiredoxins are conserved markers of circadian rhythms

              Summary Cellular life emerged ~3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles due to the Earth’s rotation. The advantage conferred upon organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation-reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterising their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription-translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular time-keeping with redox homeostatic mechanisms following the Great Oxidation Event ~2.5 billion years ago.
                Bookmark

                Author and article information

                Journal
                10.1534/g3.115.023549

                Comments

                Comment on this article