58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.

          Related collections

          Most cited references264

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

          Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.

            The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of pluripotent stem cells from adult human fibroblasts by defined factors.

              Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from mouse somatic cells by transduction of four defined transcription factors. Here, we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity. Furthermore, these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
                Bookmark

                Author and article information

                Journal
                Stem Cells Int
                Stem cells international
                Hindawi Limited
                1687-966X
                2015
                : 2015
                Affiliations
                [1 ] CNRS, UMR 7365, Lorraine University, 54500 Vandoeuvre, France ; Nancy Hospital (CHU), Cell and Tissue Therapy Unit (UTCT), 54500 Vandoeuvre, France ; Lorraine University, 54000 Nancy, France.
                [2 ] CNRS, UMR 7365, Lorraine University, 54500 Vandoeuvre, France ; Lorraine University, 54000 Nancy, France.
                [3 ] Medical College and Zhongnan Hospital, Wuhan University, Wuhan, China.
                [4 ] Service de Thérapie Cellulaire, Calmette Hospital, Kunming, China.
                [5 ] Medical School, Wuhan University, Wuhan, Hubei, China.
                [6 ] Anzhen Hospital, Cardiovascular and Lung Research Center, Beijing, China.
                Article
                10.1155/2015/734731
                4537770
                26300923
                0f408c0a-774d-48af-b9cc-3e28871b84a3
                History

                Comments

                Comment on this article