30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Genitourinary anomalies in Mowat-Wilson syndrome with deletion/mutation in the zinc finger homeo box 1B gene (ZFHX1B). Report of three Italian cases with hypospadias and review.

      Hormone research
      Child, Preschool, Chromosomes, Human, Pair 2, genetics, DNA Mutational Analysis, Homeodomain Proteins, Humans, Hypospadias, complications, pathology, Infant, Infant, Newborn, Intellectual Disability, etiology, Male, Microcephaly, Phenotype, Point Mutation, Repressor Proteins, Syndrome

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypospadias, when the urethra opens on the ventral side of the penis, is a common malformation seen in about 3 per 1,000 male births. It is a complex disorder associated with genetic and environmental factors and can be part of genetic syndromes. Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly syndrome characterized by a distinct facial phenotype, Hirschsprung disease, microcephaly and mental retardation. It is caused by mutations in the zinc finger homeo box 1B gene, ZFHX1B (SIP1). To date, 68 deletion/mutation-positive cases have been reported. Genitourinary anomalies are common in MWS. Here we report that hypospadias is common in males with this syndrome. In 39 patients where this information was available, hypospadias was present in 46% of patients (18/39). In the 3 Italian male cases reported here, hypospadias was always present. MWS should be considered by endocrinologists in patients with hypospadias associated with developmental delays/mental retardation, in particular in the presence of a distinct facial phenotype. 2005 S. Karger AG, Basel

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes.

          Activation of transforming growth factor beta receptors causes the phosphorylation and nuclear translocation of Smad proteins, which then participate in the regulation of expression of target genes. We describe a novel Smad-interacting protein, SIP1, which was identified using the yeast two-hybrid system. Although SIP1 interacts with the MH2 domain of receptor-regulated Smads in yeast and in vitro, its interaction with full-length Smads in mammalian cells requires receptor-mediated Smad activation. SIP1 is a new member of the deltaEF1/Zfh-1 family of two-handed zinc finger/homeodomain proteins. Like deltaEF1, SIP1 binds to 5'-CACCT sequences in different promoters, including the Xenopus brachyury promoter. Overexpression of either full-length SIP1 or its C-terminal zinc finger cluster, which bind to the Xbra2 promoter in vitro, prevented expression of the endogenous Xbra gene in early Xenopus embryos. Therefore, SIP1, like deltaEF1, is likely to be a transcriptional repressor, which may be involved in the regulation of at least one immediate response gene for activin-dependent signal transduction pathways. The identification of this Smad-interacting protein opens new routes to investigate the mechanisms by which transforming growth factor beta members exert their effects on expression of target genes in responsive cells and in the vertebrate embryo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: delineation of a new syndrome and identification of a locus at chromosome 2q22-q23.

            We have identified six children with a distinctive facial phenotype in association with mental retardation (MR), microcephaly, and short stature, four of whom presented with Hirschsprung (HSCR) disease in the neonatal period. HSCR was diagnosed in a further child at the age of 3 years after investigation for severe chronic constipation and another child, identified as sharing the same facial phenotype, had chronic constipation, but did not have HSCR. One of our patients has an interstitial deletion of chromosome 2, del(2)(q21q23). These children strongly resemble the patient reported by Lurie et al with HSCR and dysmorphic features associated with del(2)(q22q23). All patients have been isolated cases, suggesting a contiguous gene syndrome or a dominant single gene disorder involving a locus for HSCR located at 2q22-q23. Review of published reports suggests that there is significant phenotypic and genetic heterogeneity within the group of patients with HSCR, MR, and microcephaly. In particular, our patients appear to have a separate disorder from Goldberg-Shprintzen syndrome, for which autosomal recessive inheritance has been proposed because of sib recurrence and consanguinity in some families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease.

              Hirschsprung disease (HSCR) is sometimes associated with a set of characteristics including mental retardation, microcephaly, and distinct facial features, but the gene mutated in this condition has not yet been identified. Here we report that mutations in SIP1, encoding Smad interacting protein-1, cause disease in a series of cases. SIP1 is located in the deleted segment at 2q22 from a patient with a de novo t(2;13)(q22;q22) translocation. SIP1 seems to have crucial roles in normal embryonic neural and neural crest development.
                Bookmark

                Author and article information

                Comments

                Comment on this article