51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Slowing ageing by design: the rise of NAD + and sirtuin-activating compounds

      research-article
      1 , 1 , 2
      Nature reviews. Molecular cell biology

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sirtuins (SIRT1–7) are a family of nicotinamide adenine dinucleotide (NAD +)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD + precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian sirtuins: biological insights and disease relevance.

          Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sirtuin activators mimic caloric restriction and delay ageing in metazoans.

            Caloric restriction extends lifespan in numerous species. In the budding yeast Saccharomyces cerevisiae this effect requires Sir2 (ref. 1), a member of the sirtuin family of NAD+-dependent deacetylases. Sirtuin activating compounds (STACs) can promote the survival of human cells and extend the replicative lifespan of yeast. Here we show that resveratrol and other STACs activate sirtuins from Caenorhabditis elegans and Drosophila melanogaster, and extend the lifespan of these animals without reducing fecundity. Lifespan extension is dependent on functional Sir2, and is not observed when nutrients are restricted. Together these data indicate that STACs slow metazoan ageing by mechanisms that may be related to caloric restriction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

              Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                100962782
                22271
                Nat Rev Mol Cell Biol
                Nat. Rev. Mol. Cell Biol.
                Nature reviews. Molecular cell biology
                1471-0072
                1471-0080
                24 October 2016
                24 August 2016
                November 2016
                01 November 2017
                : 17
                : 11
                : 679-690
                Affiliations
                [1 ]Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
                [2 ]Department of Pharmacology, The University of New South Wales, Sydney 2052, Australia
                Author notes
                Article
                PMC5107309 PMC5107309 5107309 nihpa813044
                10.1038/nrm.2016.93
                5107309
                27552971
                1d730cc4-e06d-4f73-bbb9-89508dc0b69d
                History
                Categories
                Article

                Comments

                Comment on this article