+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon?

      , *
      Journal of Immunology Research
      Hindawi Publishing Corporation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Defensins: antimicrobial peptides of innate immunity.

          Tomas Ganz (2003)
          The production of natural antibiotic peptides has emerged as an important mechanism of innate immunity in plants and animals. Defensins are diverse members of a large family of antimicrobial peptides, contributing to the antimicrobial action of granulocytes, mucosal host defence in the small intestine and epithelial host defence in the skin and elsewhere. This review, inspired by a spate of recent studies of defensins in human diseases and animal models, focuses on the biological function of defensins.
            • Record: found
            • Abstract: found
            • Article: not found

            MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?

            Elucidating how natural selection promotes local adaptation in interaction with migration, genetic drift and mutation is a central aim of evolutionary biology. While several conceptual and practical limitations are still restraining our ability to study these processes at the DNA level, genes of the major histocompatibility complex (MHC) offer several assets that make them unique candidates for this purpose. Yet, it is unclear what general conclusions can be drawn after 15 years of empirical research that documented MHC diversity in the wild. The general objective of this review is to complement earlier literature syntheses on this topic by focusing on MHC studies other than humans and mice. This review first revealed a strong taxonomic bias, whereby many more studies of MHC diversity in natural populations have dealt with mammals than all other vertebrate classes combined. Secondly, it confirmed that positive selection has a determinant role in shaping patterns of nucleotide diversity in MHC genes in all vertebrates studied. Yet, future tests of positive selection would greatly benefit from making better use of the increasing number of models potentially offering more statistical rigour and higher resolution in detecting the effect and form of selection. Thirdly, studies that compared patterns of MHC diversity within and among natural populations with neutral expectations have reported higher population differentiation at MHC than expected either under neutrality or simple models of balancing selection. Fourthly, several studies showed that MHC-dependent mate preference and kin recognition may provide selective factors maintaining polymorphism in wild outbred populations. However, they also showed that such reproductive mechanisms are complex and context-based. Fifthly, several studies provided evidence that MHC may significantly influence fitness, either by affecting reproductive success or progeny survival to pathogens infections. Overall, the evidence is compelling that the MHC currently represents the best system available in vertebrates to investigate how natural selection can promote local adaptation at the gene level despite the counteracting actions of migration and genetic drift. We conclude this review by proposing several directions where future research is needed.
              • Record: found
              • Abstract: found
              • Article: not found

              Biological and biomedical implications of the co-evolution of pathogens and their hosts.

              Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host-pathogen interactions.

                Author and article information

                J Immunol Res
                J Immunol Res
                Journal of Immunology Research
                Hindawi Publishing Corporation
                24 May 2015
                : 2015
                : 838035
                Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, 128 44 Praha, Czech Republic
                Author notes

                Academic Editor: Nejat K. Egilmez

                Author information
                Copyright © 2015 M. Těšický and M. Vinkler.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 25 March 2015
                : 4 May 2015
                Review Article


                Comment on this article