49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Progress Toward In Vivo Use of siRNAs-II

      review-article
      1 , 1 , *
      Molecular Therapy
      Nature Publishing Group

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.

          Related collections

          Most cited references250

          • Record: found
          • Abstract: found
          • Article: not found

          RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

          Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of gene silencing by double-stranded RNA.

            Double-stranded RNA (dsRNA) is an important regulator of gene expression in many eukaryotes. It triggers different types of gene silencing that are collectively referred to as RNA silencing or RNA interference. A key step in known silencing pathways is the processing of dsRNAs into short RNA duplexes of characteristic size and structure. These short dsRNAs guide RNA silencing by specific and distinct mechanisms. Many components of the RNA silencing machinery still need to be identified and characterized, but a more complete understanding of the process is imminent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanoparticles for biology and medicine.

              Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.
                Bookmark

                Author and article information

                Journal
                Mol Ther
                Molecular Therapy
                Nature Publishing Group
                1525-0016
                1525-0024
                March 2012
                20 December 2011
                : 20
                : 3
                : 483-512
                Affiliations
                [1 ]Integrated DNA Technologies, Inc. , Coralville, Iowa, USA
                Author notes
                [* ]Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, Iowa 52241, USA. E-mail: mbehlke@ 123456idtdna.com
                Article
                mt2011263
                10.1038/mt.2011.263
                3293614
                22186795
                3895ac19-5206-49ee-ad33-c0ea5bbfa266
                Copyright © 2012 The American Society of Gene & Cell Therapy
                History
                : 02 September 2011
                : 08 November 2011
                Categories
                Review

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article