29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting

      Brain Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Leptin.

          The discovery of the adipose-derived hormone leptin has generated enormous interest in the interaction between peripheral signals and brain targets involved in the regulation of feeding and energy balance. Plasma leptin levels correlate with fat stores and respond to changes in energy balance. It was initially proposed that leptin serves a primary role as an anti-obesity hormone, but this role is commonly thwarted by leptin resistance. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which the molecule evolved. There is increasing evidence that leptin has systemic effects apart from those related to energy homeostasis, including regulation of neuroendocrine and immune function and a role in development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leptin regulation of neuroendocrine systems.

            The discovery of leptin has enhanced understanding of the interrelationship between adipose energy stores and neuronal circuits in the brain involved in energy balance and regulation of the neuroendocrine axis. Leptin levels are dependent on the status of fat stores as well as changes in energy balance as a result of fasting and overfeeding. Although leptin was initially thought to serve mainly as an anti-satiety hormone, recent studies have shown that it mediates the adaptation to fasting. Furthermore, leptin has been implicated in the regulation of the reproductive, thyroid, growth hormone, and adrenal axes, independent of its role in energy balance. Although it is widely known that leptin acts on hypothalamic neuronal targets to regulate energy balance and neuroendocrine function, the specific neuronal populations mediating leptin action on feeding behavior and autonomic and neuroendocrine function are not well understood. In this review, we have discussed how leptin engages arcuate hypothalamic neurons expressing putative orexigenic peptides, e.g., neuropeptide Y and agouti-regulated peptide, and anorexigenic peptides, e.g., pro-opiomelanocortin (precursor of alpha-melanocyte-stimulating hormone) and cocaine- and amphetamine-regulated transcript. We show that leptin's effects on energy balance and the neuroendocrine axis are mediated by projections to other hypothalamic nuclei, e.g., paraventricular, lateral, and perifornical areas, as well as other sites in the brainstem, spinal cord, and cortical and subcortical regions. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin.

              Orexin-A and orexin-B (the hypocretins) are recently described neuropeptides suggested to have a physiological role in the regulation of food intake in the rat. We compared the orexigenic effect of the orexins administered intracerebroventricular (ICV) with other known stimulants of food intake, one strong, neuropeptide Y (NPY), and two weaker, melanin-concentrating hormone (MCH) and galanin. Orexin-A consistently stimulated food intake, but orexin-B only on occasions. Both peptides stimulated food intake significantly less than NPY, but to a similar extent to MCH (2 h food intake: NPY 3 nmol, 7.2+/-0.9 g vs saline, 1.5+/-0.2 g, P<0.001, MCH 3 nmol, 3.2+/-0.8 g vs saline, P<0.01, orexin-B 30 nmol, 2. 6+/-0.5 g vs saline, P=0.11) and to galanin (1 h food intake: galanin 3 nmol, 2.0+/-0.4 g vs saline, 0.8+/-0.2 g, P<0.05, orexin-A 3 nmol 2.2+/-0.4 g vs saline, P<0.01; 2 hour food intake: orexin-B 3 nmol, 2.4+/-0.3 g vs saline, 1.3+/-0.2 g, P<0.05). Following ICV orexin-A, hypothalamic c-fos, a maker of neuronal activation, was highly expressed in the paraventricular nucleus (PVN), and the arcuate nucleus (P<0.005 for both). IntraPVN injection of orexin-A stimulated 2 h food intake by one gram (orexin-A 0.03 nmol, 1.6+/-0. 3 g vs saline, 0.5+/-0.3 g, P<0.005). These findings support the suggestion that the orexins stimulate food intake. However, this effect is weak and may cast doubt upon their physiological importance in appetite regulation in the rat.
                Bookmark

                Author and article information

                Journal
                10.1016/S0006-8993(03)02507-1
                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article