28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Cystic Diseases of the Kidney: Role of Adhesion Molecules in Normal and Abnormal Tubulogenesis

      ,
      Nephron Experimental Nephrology
      S. Karger AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This short review summarizes some information concerning what is known about matrix adhesion molecules, focal adhesion proteins, and cell-cell adhesion molecules in normal renal development and cystic diseases of the kidney. The focus is on human nephrogenesis and disease, but utilizes critical information gained from genetically manipulated mouse models. Interestingly, a significant role for the human PKD-1 -encoded gene product, polycystin-1, has been found in cell-matrix interactions via integrins during development, and mutations lead to autosomal dominant polycystic kidney disease (ADPKD). Recent studies on human ADPKD have implicated polycystin-1 in the formation of multiprotein complexes containing focal adhesion proteins at the basal cell surface of the normal ureteric bud. Further evidence of a critical role of cell-matrix interactions via focal adhesion complex formation is provided by the development of renal cystic disease in tensin knockout mice.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4.

          The kidney has been widely exploited as a model system for the study of tissue inductions regulating vertebrate organogenesis. Kidney development is initiated by the ingrowth of the Wolfian duct-derived ureteric bud into the presumptive kidney mesenchyme. In response to a signal from the ureter, mesenchymal cells condense, aggregate into pretubular clusters and undergo an epithelial conversion generating a simple tubule. This then undergoes morphogenesis and is transformed into the excretory system of the kidney, the nephron. We report here that the expression of Wnt-4, which encodes a secreted glycoprotein, correlates with, and is required for, kidney tubulogenesis. Mice lacking Wnt-4 activity fail to form pretubular cell aggregates; however, other aspects of mesenchymal and ureteric development are unaffected. Thus, Wnt-4 appears to act as an autoinducer of the mesenchyme to epithelial transition that underlies nephron development.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice.

              Cell-extracellular matrix interactions have important roles in many biological processes, including embryonic development, growth control and differentiation. Integrins are the principal receptors for extracellular matrix. They are composed of non-covalently associated alpha and beta chains. Integrin alpha 6 can associate with either beta 1 or beta 4 (refs 2,3). Both integrin complexes are receptors for laminins, major components of basement membranes. The distribution of alpha 6 (refs 4-10) as well as studies using function-blocking antibodies have suggested an essential role for this laminin receptor during embryogenesis, in processes such as endoderm migration or kidney tubule formation9. Here we report that, surprisingly, mice lacking the alpha 6 integrin chain develop to birth. However, they die at birth with severe blistering of the skin and other epithelia, a phenotype reminiscent of the human disorder epidermolysis bullosa. Hemidesmosomes are absent in mutant tissue. This absence is likely to result from the lack of alpha 6/beta 4, the only integrin in hemidesmosomes of stratified squamous and transitional epithelia. Mutations in the genes encoding integrin beta 4 and chains of laminin-5 have been implicated in junctional epidermolysis bullosa. Our study provides evidence that some forms of epidermolysis bullosa may originate from defects of the alpha 6 gene.
                Bookmark

                Author and article information

                Journal
                Nephron Experimental Nephrology
                Nephron Exp Nephrol
                S. Karger AG
                1660-2129
                April 1 1999
                April 23 1999
                : 7
                : 2
                : 114-124
                Article
                10.1159/000020592
                b625487e-5569-46a8-a353-4d217f525746
                © 1999

                https://www.karger.com/Services/SiteLicenses

                https://www.karger.com/Services/SiteLicenses

                History

                Comments

                Comment on this article