30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease.

      Nature genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          UK Biobank is among the world's largest repositories for phenotypic and genotypic information in individuals of European ancestry. We performed a genome-wide association study in UK Biobank testing ∼9 million DNA sequence variants for association with coronary artery disease (4,831 cases and 115,455 controls) and carried out meta-analysis with previously published results. We identified 15 new loci, bringing the total number of loci associated with coronary artery disease to 95 at the time of analysis. Phenome-wide association scanning showed that CCDC92 likely affects coronary artery disease through insulin resistance pathways, whereas experimental analysis suggests that ARHGEF26 influences the transendothelial migration of leukocytes.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Genomewide association analysis of coronary artery disease.

          Modern genotyping platforms permit a systematic search for inherited components of complex diseases. We performed a joint analysis of two genomewide association studies of coronary artery disease. We first identified chromosomal loci that were strongly associated with coronary artery disease in the Wellcome Trust Case Control Consortium (WTCCC) study (which involved 1926 case subjects with coronary artery disease and 2938 controls) and looked for replication in the German MI [Myocardial Infarction] Family Study (which involved 875 case subjects with myocardial infarction and 1644 controls). Data on other single-nucleotide polymorphisms (SNPs) that were significantly associated with coronary artery disease in either study (P 80%) of a true association: chromosomes 1p13.3 (rs599839), 1q41 (rs17465637), 10q11.21 (rs501120), and 15q22.33 (rs17228212). We identified several genetic loci that, individually and in aggregate, substantially affect the risk of development of coronary artery disease. Copyright 2007 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of coronary artery disease: discovery, biology and clinical translation

            The past decade has seen tremendous progress in understanding the genetic architecture of coronary artery disease (CAD). Khera and Kathiresan review research efforts that have improved our understanding of the genetic drivers of CAD, and discuss the promises and challenges of integrating genetic information into routine clinical practice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocyte trafficking across the vessel wall.

              Monocytes fundamentally contribute to immune surveillance and the inflammatory response in immunoinflammatory diseases like atherosclerosis. Recruitment of these cells to the site of injury requires their trafficking across the blood vessel wall. A series of events, including capture, rolling, slow rolling, arrest, adhesion strengthening, and lateral locomotion, precede monocyte transmigration. Recent investigations have revealed new aspects of this cascade. This article revisits some conventional paradigms and selectively highlights new findings, including novel insights into monocyte differentiation and recently identified functional mediators, signalling pathways, and new structural aspects of monocyte extravasation. The emerging roles of endothelial junctional molecules like vascular endothelial-cadherin and the junctional adhesion molecule family, adhesion molecules such as intercellular adhesion molecule-1, molecules localized to the lateral border recycling compartment like cluster of differentiation 99, platelet/endothelial cell adhesion molecule-1, and poliovirus receptor (CD155), as well as other cell surface molecules such as cluster of differentiation 146 and ephrins in transendothelial migration are discussed.
                Bookmark

                Author and article information

                Journal
                28714974
                10.1038/ng.3914

                Comments

                Comment on this article