27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Down-regulation of renal klotho expression by Shiga toxin 2.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shiga toxin 2 may trigger classical hemolytic uremic syndrome (HUS) eventually leading to renal failure. Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney is involved in the regulation of renal phosphate excretion and also retains renal protective effects. Renal failure is associated with renal depletion of klotho. The present study explored the influence of Shiga toxin 2 on renal klotho expression.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome.

          Most cases of diarrhoea-associated haemolytic uraemic syndrome (HUS) are caused by Shiga-toxin-producing bacteria; the pathophysiology differs from that of thrombotic thrombocytopenic purpura. Among Shiga-toxin-producing Escherichia coli (STEC), O157:H7 has the strongest association worldwide with HUS. Many different vehicles, in addition to the commonly suspected ground (minced) beef, can transmit this pathogen to people. Antibiotics, antimotility agents, narcotics, and non-steroidal anti-inflammatory drugs should not be given to acutely infected patients, and we advise hospital admission and administration of intravenous fluids. Management of HUS remains supportive; there are no specific therapies to ameliorate the course. The vascular injury leading to HUS is likely to be well under way by the time infected patients seek medical attention for diarrhoea. The best way to prevent HUS is to prevent primary infection with Shiga-toxin-producing bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Klotho deficiency causes vascular calcification in chronic kidney disease.

            Soft-tissue calcification is a prominent feature in both chronic kidney disease (CKD) and experimental Klotho deficiency, but whether Klotho deficiency is responsible for the calcification in CKD is unknown. Here, wild-type mice with CKD had very low renal, plasma, and urinary levels of Klotho. In humans, we observed a graded reduction in urinary Klotho starting at an early stage of CKD and progressing with loss of renal function. Despite induction of CKD, transgenic mice that overexpressed Klotho had preserved levels of Klotho, enhanced phosphaturia, better renal function, and much less calcification compared with wild-type mice with CKD. Conversely, Klotho-haploinsufficient mice with CKD had undetectable levels of Klotho, worse renal function, and severe calcification. The beneficial effect of Klotho on vascular calcification was a result of more than its effect on renal function and phosphatemia, suggesting a direct effect of Klotho on the vasculature. In vitro, Klotho suppressed Na(+)-dependent uptake of phosphate and mineralization induced by high phosphate and preserved differentiation in vascular smooth muscle cells. In summary, Klotho is an early biomarker for CKD, and Klotho deficiency contributes to soft-tissue calcification in CKD. Klotho ameliorates vascular calcification by enhancing phosphaturia, preserving glomerular filtration, and directly inhibiting phosphate uptake by vascular smooth muscle. Replacement of Klotho may have therapeutic potential for CKD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane.

              Klotho mutant mice exhibit a set of phenotypes resembling human ageing. Although the function of Klotho remains unclear, mediation of its pleiotropic functions by putative humoral factor(s) has been presumed. Newly established antibodies against Klotho allowed the detection of secreted Klotho, a candidate for the putative humoral factor, in sera and cerebrospinal fluid. Surprisingly the secreted Klotho was 130 kDa, in contrast to the 70 kDa predicted form from klotho gene transcripts. The secreted as well as the membrane-bound Klotho proteins were suggested to form oligomerized complex. These results delineate post-translation processing of Klotho and possible regulatory mechanisms for secretion of Klotho in vivo.
                Bookmark

                Author and article information

                Journal
                Kidney Blood Press. Res.
                Kidney & blood pressure research
                S. Karger AG
                1423-0143
                1420-4096
                2014
                : 39
                : 5
                Affiliations
                [1 ] Department of Physiology, University of Tübingen, Tübingen, Germany.
                Article
                000368457
                10.1159/000368457
                25471359
                0fef202c-214f-454b-8c74-e529ad6920b8
                History

                Comments

                Comment on this article