82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prostanoid Receptors: Structures, Properties, and Functions

      Physiological reviews
      American Physiological Society

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references177

          • Record: found
          • Abstract: not found
          • Article: not found

          Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.

          J R Vane (1971)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypertension in mice lacking the gene for endothelial nitric oxide synthase.

            Nitric oxide (NO), a potent vasodilator produced by endothelial cells, is thought to be the endothelium-dependent relaxing factor (EDRF) which mediates vascular relaxation in response to acetylcholine, bradykinin and substance P in many vascular beds. NO has been implicated in the regulation of blood pressure and regional blood flow, and also affects vascular smooth-muscle proliferation and inhibits platelet aggregation and leukocyte adhesion. Abnormalities in endothelial production of NO occur in atherosclerosis, diabetes and hypertension. Pharmacological blockade of NO production with arginine analogues such as L-nitroarginine (L-NA) or L-N-arginine methyl ester affects multiple isoforms of nitric oxide synthase (NOS), and so cannot distinguish their physiological roles. To study the role of endothelial NOS (eNOS) in vascular function, we disrupted the gene encoding eNOS in mice. Endothelium-derived relaxing factor activity, as assayed by acetylcholine-induced relaxation, is absent, and the eNOS mutant mice are hypertensive. Thus eNOS mediates basal vasodilation. Responses to NOS blockade in the mutant mice suggest that non-endothelial isoforms of NOS may be involved in maintaining blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis.

              Leukotriene B4 (LTB4) is a potent chemoattractant that is primarily involved in inflammation, immune responses and host defence against infection. LTB4 activates inflammatory cells by binding to its cell-surface receptor (BLTR). LTB4 can also bind and activate the intranudear transcription factor PPAR alpha, resulting in the activation of genes that terminate inflammatory processes. Here we report the cloning of the complementary DNA encoding a cell-surface LTB4 receptor that is highly expressed in human leukocytes. Using a subtraction strategy, we isolated two cDNA clones (HL-1 and HL-5) from retinoic acid-differentiated HL-60 cells. These two clones contain identical open reading frames encoding a protein of 352 amino acids and predicted to contain seven membrane-spanning domains, but different 5'-untranslated regions. Membrane fractions of Cos-7 cells transfected with an expression construct containing the open reading frame of HL-5 showed specific LTB4 binding, with a K(d) (0.154nM) comparable to that observed in retinoic acid-differentiated HL-60 cells. In CHO cells stably expressing this receptor, LTB4 induced increases in intracellular calcium, D-myo-inositol-1,4,5-triphosphate (InsP3) accumulation, and inhibition of adenylyl cyclase. Furthermore, CHO cells expressing exogenous BLTR showed marked chemotactic responses towards low concentrations of LTB4 in a pertussis-toxin-sensitive manner. Our findings, together with previous reports, show that LTB4 is a unique lipid mediator that interacts with both cell-surface and nuclear receptors.
                Bookmark

                Author and article information

                Journal
                10.1152/physrev.1999.79.4.1193

                Comments

                Comment on this article