31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer and Aging - the Inflammatory Connection.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging and cancer are highly correlated biological phenomena. Various cellular processes such as DNA damage responses and cellular senescence that serve as tumor suppressing mechanisms throughout life result in degenerative changes and contribute to the aging phenotype. In turn, aging is considered a pro-tumorigenic state, and constitutes the single most important risk factor for cancer development. However, the causative relations between aging and cancer is not straight forward, as these processes carry contradictory hallmarks; While aging is characterized by tissue degeneration and organ loss of function, cancer is a state of sustained cellular proliferation and gain of new functions. Here, we review the molecular and cellular pathways that stand in the base of aging related cancer. Specifically, we deal with the inflammatory perspective that link these two processes, and suggest possible molecular targets that may be exploited to modify their courses.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Aging, Cellular Senescence, and Cancer

            For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

              Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
                Bookmark

                Author and article information

                Journal
                Aging Dis
                Aging and disease
                Aging and Disease
                2152-5250
                2152-5250
                Oct 2017
                : 8
                : 5
                Affiliations
                [1 ] 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
                [2 ] 2Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
                Article
                ad-8-5-611
                10.14336/AD.2016.1230
                5614325
                28966805
                a136bb49-3c27-40c2-bec0-f73e1305ba41
                History

                aging,autophagy,cancer,immunosenescence,inflammation,senescence
                aging, autophagy, cancer, immunosenescence, inflammation, senescence

                Comments

                Comment on this article