92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite lack of tumor control in many models, spontaneous T cell priming occurs frequently in response to a growing tumor. However, the innate immune mechanisms that promote natural antitumor T cell responses are undefined. In human metastatic melanoma, there was a correlation between a type I interferon (IFN) transcriptional profile and T cell markers in metastatic tumor tissue. In mice, IFN-β was produced by CD11c(+) cells after tumor implantation, and tumor-induced T cell priming was defective in mice lacking IFN-α/βR or Stat1. IFN signaling was required in the hematopoietic compartment at the level of host antigen-presenting cells, and selectively for intratumoral accumulation of CD8α(+) dendritic cells, which were demonstrated to be essential using Batf3(-/-) mice. Thus, host type I IFNs are critical for the innate immune recognition of a growing tumor through signaling on CD8α(+) DCs.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.

          Although in vitro observations suggest that cross-presentation of antigens is mediated primarily by CD8alpha+ dendritic cells, in vivo analysis has been hampered by the lack of systems that selectively eliminate this cell lineage. We show that deletion of the transcription factor Batf3 ablated development of CD8alpha+ dendritic cells, allowing us to examine their role in immunity in vivo. Dendritic cells from Batf3-/- mice were defective in cross-presentation, and Batf3-/- mice lacked virus-specific CD8+ T cell responses to West Nile virus. Importantly, rejection of highly immunogenic syngeneic tumors was impaired in Batf3-/- mice. These results suggest an important role for CD8alpha+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment.

            Despite the frequent detection of circulating tumor antigen-specific T cells, either spontaneously or following active immunization or adoptive transfer, immune-mediated cancer regression occurs only in the minority of patients. One theoretical rate-limiting step is whether effector T cells successfully migrate into metastatic tumor sites. Affymetrix gene expression profiling done on a series of metastatic melanoma biopsies revealed a major segregation of samples based on the presence or absence of T-cell-associated transcripts. The presence of lymphocytes correlated with the expression of defined chemokine genes. A subset of six chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) was confirmed by protein array and/or quantitative reverse transcription-PCR to be preferentially expressed in tumors that contained T cells. Corresponding chemokine receptors were found to be up-regulated on human CD8(+) effector T cells, and transwell migration assays confirmed the ability of each of these chemokines to promote migration of CD8(+) effector cells in vitro. Screening by chemokine protein array identified a subset of melanoma cell lines that produced a similar broad array of chemokines. These melanoma cells more effectively recruited human CD8(+) effector T cells when implanted as xenografts in nonobese diabetic/severe combined immunodeficient mice in vivo. Chemokine blockade with specific antibodies inhibited migration of CD8(+) T cells. Our results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of antitumor immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens.

              Cytotoxic T lymphocytes (CTL) respond to antigenic peptides presented on MHC class I molecules. On most cells, these peptides are exclusively of endogenous, cytosolic origin. Bone marrow-derived antigen-presenting cells, however, harbor a unique pathway for MHC I presentation of exogenous antigens. This mechanism permits cross-presentation of pathogen-infected cells and the priming of CTL responses against intracellular microbial infections. Here, we report a novel diphtheria toxin-based system that allows the inducible, short-term ablation of dendritic cells (DC) in vivo. We show that in vivo DC are required to cross-prime CTL precursors. Our results thus define a unique in vivo role of DC, i.e., the sensitization of the immune system for cell-associated antigens. DC-depleted mice fail to mount CTL responses to infection with the intracellular bacterium Listeria monocytogenes and the rodent malaria parasite Plasmodium yoelii.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of experimental medicine
                Rockefeller University Press
                1540-9538
                0022-1007
                Sep 26 2011
                : 208
                : 10
                Affiliations
                [1 ] Department of Pathology and Department of Medicine, Section of Hematology/Oncology, the University of Chicago, Chicago, IL, USA.
                Article
                jem.20101159
                10.1084/jem.20101159
                3182064
                21930765
                1a638d56-c087-4ac3-be20-9c3be032786b
                History

                Comments

                Comment on this article