25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy.

      Circulation Research
      Animals, Autocrine Communication, Cardiomegaly, complications, pathology, physiopathology, Cytokines, metabolism, Disease Models, Animal, Extracellular Matrix, Fibroblasts, Fibrosis, genetics, Gene Expression Regulation, Growth Substances, Humans, Mice, Myocardium, Paracrine Communication, Ventricular Remodeling

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structural remodeling of the ventricular wall is a key determinant of clinical outcome in heart disease. Such remodeling involves the production and destruction of extracellular matrix proteins, cell proliferation and migration, and apoptotic and necrotic cell death. Cardiac fibroblasts are crucially involved in these processes, producing growth factors and cytokines that act as autocrine and paracrine factors, as well as extracellular matrix proteins and proteinases. Recent studies have shown that the interactions between cardiac fibroblasts and cardiomyocytes are essential for the progression of cardiac remodeling. This review addresses the functional role played by cardiac fibroblasts and the molecular mechanisms that govern their activity during cardiac hypertrophy and remodeling. A particular focus is the recent progress toward our understanding of the transcriptional regulatory mechanisms involved.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators.

          Aldosterone is important in the pathophysiology of heart failure. In a doubleblind study, we enrolled 1663 patients who had severe heart failure and a left ventricular ejection fraction of no more than 35 percent and who were being treated with an angiotensin-converting-enzyme inhibitor, a loop diuretic, and in most cases digoxin. A total of 822 patients were randomly assigned to receive 25 mg of spironolactone daily, and 841 to receive placebo. The primary end point was death from all causes. The trial was discontinued early, after a mean follow-up period of 24 months, because an interim analysis determined that spironolactone was efficacious. There were 386 deaths in the placebo group (46 percent) and 284 in the spironolactone group (35 percent; relative risk of death, 0.70; 95 percent confidence interval, 0.60 to 0.82; P<0.001). This 30 percent reduction in the risk of death among patients in the spironolactone group was attributed to a lower risk of both death from progressive heart failure and sudden death from cardiac causes. The frequency of hospitalization for worsening heart failure was 35 percent lower in the spironolactone group than in the placebo group (relative risk of hospitalization, 0.65; 95 percent confidence interval, 0.54 to 0.77; P<0.001). In addition, patients who received spironolactone had a significant improvement in the symptoms of heart failure, as assessed on the basis of the New York Heart Association functional class (P<0.001). Gynecomastia or breast pain was reported in 10 percent of men who were treated with spironolactone, as compared with 1 percent of men in the placebo group (P<0.001). The incidence of serious hyperkalemia was minimal in both groups of patients. Blockade of aldosterone receptors by spironolactone, in addition to standard therapy, substantially reduces the risk of both morbidity and death among patients with severe heart failure.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Transforming growth factor beta in tissue fibrosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myofibroblasts and mechano-regulation of connective tissue remodelling.

              During the past 20 years, it has become generally accepted that the modulation of fibroblastic cells towards the myofibroblastic phenotype, with acquisition of specialized contractile features, is essential for connective-tissue remodelling during normal and pathological wound healing. Yet the myofibroblast still remains one of the most enigmatic of cells, not least owing to its transient appearance in association with connective-tissue injury and to the difficulties in establishing its role in the production of tissue contracture. It is clear that our understanding of the myofibroblast its origins, functions and molecular regulation will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
                Bookmark

                Author and article information

                Comments

                Comment on this article