26
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Negative Regulation of the Creatine Transporter SLC6A8 by SPAK and OSR1

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Transport regulation involves several kinases including SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are under control of WNK (with-no-K[Lys]) kinases. The present study explored whether SPAK and/or OSR1 participate in the regulation of the creatine transporter CreaT (SLC6A8), which accomplishes Na<sup>+</sup> coupled cellular uptake of creatine in several tissues including kidney, intestine, heart, skeletal muscle and brain. Methods: cRNA encoding SLC6A8 was injected into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active <sup>T233E</sup>SPAK, WNK insensitive <sup>T233A</sup>SPAK, catalytically inactive <sup>D212A</sup>SPAK, wild-type OSR1, constitutively active <sup>T185E</sup>OSR1, WNK insensitive <sup>T185A</sup>OSR1 and catalytically inactive <sup>D164A</sup>OSR1. Transporter activity was determined from creatine (1 mM) induced current utilizing dual electrode voltage clamp. Results: Coexpression of wild-type SPAK and of <sup>T233E</sup>SPAK, but not of <sup>T233A</sup>SPAK or of <sup>D212A</sup>SPAK was followed by a significant decrease of creatine induced current in SLC6A8 expressing oocytes. Coexpression of SPAK significantly decreased maximal transport rate. Coexpression of wild-type OSR1, <sup>T185E</sup>OSR1 and <sup>T185A</sup>OSR1 but not of <sup>D164A</sup>OSR1 significantly negatively regulated SLC6A8 activity. OSR1 again decreased significantly maximal transport rate. Conclusions: Both, SPAK and OSR1, are negative regulators of the creatine transporter SLC6A8.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Human hypertension caused by mutations in WNK kinases.

          Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases.

            Mutations in the human genes encoding WNK1 [with no K (lysine) protein kinase-1] and the related protein kinase WNK4 are the cause of Gordon's hypertension syndrome. Little is known about the molecular mechanism by which WNK isoforms regulate cellular processes. We immunoprecipitated WNK1 from extracts of rat testis and found that it was specifically associated with a protein kinase of the STE20 family termed 'STE20/SPS1-related proline/alanine-rich kinase' (SPAK). We demonstrated that WNK1 and WNK4 both interacted with SPAK as well as a closely related kinase, termed 'oxidative stress response kinase-1' (OSR1). Wildtype (wt) but not catalytically inactive WNK1 and WNK4 phosphorylated SPAK and OSR1 to a much greater extent than with other substrates utilized previously, such as myelin basic protein and claudin-4. Phosphorylation by WNK1 or WNK4 markedly increased SPAK and OSR1 activity. Phosphopeptide mapping studies demonstrated that WNK1 phosphorylated kinase-inactive SPAK and OSR1 at an equivalent residue located within the T-loop of the catalytic domain (Thr233 in SPAK, Thr185 in OSR1) and a serine residue located within a C-terminal non-catalytic region (Ser373 in SPAK, Ser325 in OSR1). Mutation of Thr185 to alanine prevented the activation of OSR1 by WNK1, whereas mutation of Thr185 to glutamic acid (to mimic phosphorylation) increased the basal activity of OSR1 over 20-fold and prevented further activation by WNK1. Mutation of Ser325 in OSR1 to alanine or glutamic acid did not affect the basal activity of OSR1 or its ability to be activated by WNK1. These findings suggest that WNK isoforms operate as protein kinases that activate SPAK and OSR1 by phosphorylating the T-loops of these enzymes, resulting in their activation. Our analysis also describes the first facile assay that can be employed to quantitatively assess WNK1 and WNK4 activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters.

              The WNK-SPAK/OSR1 kinase complex is composed of the kinases WNK (with no lysine) and SPAK (SPS1-related proline/alanine-rich kinase) or the SPAK homolog OSR1 (oxidative stress-responsive kinase 1). The WNK family senses changes in intracellular Cl(-) concentration, extracellular osmolarity, and cell volume and transduces this information to sodium (Na(+)), potassium (K(+)), and chloride (Cl(-)) cotransporters [collectively referred to as CCCs (cation-chloride cotransporters)] and ion channels to maintain cellular and organismal homeostasis and affect cellular morphology and behavior. Several genes encoding proteins in this pathway are mutated in human disease, and the cotransporters are targets of commonly used drugs. WNKs stimulate the kinases SPAK and OSR1, which directly phosphorylate and stimulate Cl(-)-importing, Na(+)-driven CCCs or inhibit the Cl(-)-extruding, K(+)-driven CCCs. These coordinated and reciprocal actions on the CCCs are triggered by an interaction between RFXV/I motifs within the WNKs and CCCs and a conserved carboxyl-terminal docking domain in SPAK and OSR1. This interaction site represents a potentially druggable node that could be more effective than targeting the cotransporters directly. In the kidney, WNK-SPAK/OSR1 inhibition decreases epithelial NaCl reabsorption and K(+) secretion to lower blood pressure while maintaining serum K(+). In neurons, WNK-SPAK/OSR1 inhibition could facilitate Cl(-) extrusion and promote γ-aminobutyric acidergic (GABAergic) inhibition. Such drugs could have efficacy as K(+)-sparing blood pressure-lowering agents in essential hypertension, nonaddictive analgesics in neuropathic pain, and promoters of GABAergic inhibition in diseases associated with neuronal hyperactivity, such as epilepsy, spasticity, neuropathic pain, schizophrenia, and autism. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2014
                December 2014
                08 December 2014
                : 39
                : 6
                : 546-554
                Affiliations
                aDepartment of Physiology I, University of Tübingen, Tübingen, Germany; bDepartment of Life Sciences LBE(LR01/ES14), Faculty of Sciences of Bizerte, University of Carthage, Tunisia
                Author notes
                *Prof. Dr. Florian Lang, Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, (Germany), Tel. +49 7071/2972194,Fax +49 7071/295618, E-Mail florian.lang@uni-tuebingen.de
                Article
                368465 Kidney Blood Press Res 2014;39:546-554
                10.1159/000368465
                25531585
                66d9bdc6-43e6-4969-b06d-866b5eb9957b
                © 2014 S. Karger AG, Basel

                Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) ( http://www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 06 November 2014
                Page count
                Pages: 9
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Oxidative stress-responsive kinase 1,CreaT,SPS1-related proline/alanine-rich kinase,WNK

                Comments

                Comment on this article