39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ameliorative Effects of PACAP against Cartilage Degeneration. Morphological, Immunohistochemical and Biochemical Evidence from in Vivo and in Vitro Models of Rat Osteoarthritis

      International Journal of Molecular Sciences
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis.

          Meniscus lesions following trauma or associated with osteoarthritis (OA) have been described, yet meniscus aging has not been systematically analyzed. The objectives of this study were to (1) establish standardized protocols for representative macroscopic and microscopic analysis, (2) improve existing scoring systems, and (3) apply these techniques to a large number of human menisci. Medial and lateral menisci from 107 human knees were obtained and cut in two different planes (triangle/cross section and transverse/horizontal section as well) in three separate locations (middle portion, anterior and posterior horns). All sections included vascular and avascular regions and were graded for (1) surface integrity, (2) cellularity, (3) matrix/fiber organization and collagen alignment, and (4) Safranin-O staining intensity. The cartilage in all knee compartments was also scored. The new macroscopic and microscopic grading systems showed high inter-reader and intra-reader intraclass correlation coefficients. The major age-related changes in menisci in joints with no or minimal OA included increased Safranin-O staining intensity, decreased cell density, the appearance of acellular zones, and evidence of mucoid degeneration with some loss of collagen fiber organization. The earliest meniscus changes occurred predominantly along the inner rim. Menisci from OA joints showed severe fibrocartilaginous separation of the matrix, extensive fraying, tears and calcification. Abnormal cell arrangements included decreased cellularity, diffuse hypercellularity along with cellular hypertrophy and abnormal cell clusters. In general, the anterior horns of both medial and lateral menisci were less affected by age and OA. New standardized protocols and new validated grading systems allowed us to conduct a more systematic evaluation of changes in aging and OA menisci at a macroscopic and microscopic level. Several meniscus abnormalities appear to be specific to aging in the absence of significant OA. With aging the meniscal surface can be intact but abnormal matrix organization and cellularity were observed within the meniscal substance. The increased Safranin-O staining appears to represent a shift from fibroblastic to chondrocytic phenotype during aging and early degeneration. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biochemical and Metabolic Abnormalities in Articular Cartilage from Osteo-Arthritic Human Hips

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VPAC and PAC receptors: From ligands to function.

              Vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase activating polypeptides (PACAPs) share 68% identity at the amino acid level and belong to the secretin peptide family. Following the initial discovery of VIP almost four decades ago a substantial amount of knowledge has been presented describing the mechanisms of action, distribution and pleiotropic functions of these related peptides. It is now known that the physiological actions of these widely distributed peptides are produced through activation of three common G-protein coupled receptors (VPAC(1), VPAC(2) and PAC(1)R) which preferentially stimulate adenylate cyclase and increase intracellular cAMP, although stimulation of other intracellular messengers, including calcium and phospholipase D, has been reported. Using a range of in vitro and in vivo approaches, including cell-based functional assays, transgenic animals and rodent models of disease, VPAC/PAC receptor activation has been associated with numerous physiological processes (e.g. control of circadian rhythms) and clinical conditions (e.g. pulmonary hypertension), which underlies on-going research efforts and makes these peptides and their cognate receptors attractive targets for the pharmaceutical industry. However, despite the considerable interest in VPAC/PAC receptors and the processes which they mediate, there is still a paucity of selective and available, non-peptide ligands, which has hindered further advances in this field both at the basic research and clinical level. This review summarises the current knowledge of VIP/PACAP and the VPAC/PAC receptors with regard to their distribution, pharmacology, signalling pathways, splice variants and finally, the utility of animal models in exploring their physiological roles.
                Bookmark

                Author and article information

                Journal
                10.3390/ijms16035922
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article