75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of the peripheral innate immune system stimulates the secretion of CNS cytokines that modulate the behavioral symptoms of sickness. Excessive production of cytokines by microglia, however, may cause long-lasting behavioral and cognitive complications. The purpose of this study was to determine if minocycline, an anti-inflammatory agent and purported microglial inhibitor, attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Mood disorders in the medically ill: scientific review and recommendations.

          The purpose of this review is to assess the relationship between mood disorders and development, course, and associated morbidity and mortality of selected medical illnesses, review evidence for treatment, and determine needs in clinical practice and research. Data were culled from the 2002 Depression and Bipolar Support Alliance Conference proceedings and a literature review addressing prevalence, risk factors, diagnosis, and treatment. This review also considered the experience of primary and specialty care providers, policy analysts, and patient advocates. The review and recommendations reflect the expert opinion of the authors. Reviews of epidemiology and mechanistic studies were included, as were open-label and randomized, controlled trials on treatment of depression in patients with medical comorbidities. Data on study design, population, and results were extracted for review of evidence that includes tables of prevalence and pharmacological treatment. The effect of depression and bipolar disorder on selected medical comorbidities was assessed, and recommendations for practice, research, and policy were developed. A growing body of evidence suggests that biological mechanisms underlie a bidirectional link between mood disorders and many medical illnesses. In addition, there is evidence to suggest that mood disorders affect the course of medical illnesses. Further prospective studies are warranted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system.

            Acute cognitive impairment (i.e., delirium) is common in elderly emergency department patients and frequently results from infections that are unrelated to the central nervous system. Since activation of the peripheral innate immune system induces brain microglia to produce inflammatory cytokines that are responsible for behavioral deficits, we investigated if aging exacerbated neuroinflammation and sickness behavior after peripheral injection of lipopolysaccharide (LPS). Microarray analysis revealed a transcriptional profile indicating the presence of primed or activated microglia and increased inflammation in the aged brain. Furthermore, aged mice had a unique gene expression profile in the brain after an intraperitoneal injection of LPS, and the LPS-induced elevation in the brain inflammatory cytokines and oxidative stress was both exaggerated and prolonged compared with adults. Aged mice were anorectic longer and lost more weight than adults after peripheral LPS administration. Moreover, reductions in both locomotor and social behavior remained 24 h later in aged mice, when adults had fully recovered, and the exaggerated neuroinflammatory response in aged mice was not reliably paralleled by increased circulating cytokines in the periphery. Taken together, these data establish that activation of the peripheral innate immune system leads to exacerbated neuroinflammation in the aged as compared with adult mice. This dysregulated link between the peripheral and central innate immune system is likely to be involved in the severe behavioral deficits that frequently occur in older adults with systemic infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous kynurenines as targets for drug discovery and development.

              The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                Journal of neuroinflammation
                Springer Science and Business Media LLC
                1742-2094
                1742-2094
                May 13 2008
                : 5
                Affiliations
                [1 ] Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W, 10th Ave, Columbus, OH 43210, USA. henry.86@osu.edu
                Article
                1742-2094-5-15
                10.1186/1742-2094-5-15
                2412862
                18477398
                69914bd5-787a-41e6-8a36-1d268dc1374f
                History

                Comments

                Comment on this article