27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The Rise and Fall of NGAL in Acute Kidney Injury

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For many years, neutrophil gelatinase-associated lipocalin (NGAL) has been considered the most promising biomarker of acute kidney injury (AKI). Commercial assays and point-of-care instruments, now available in many hospitals, allow rapid NGAL measurements intended to guide the clinician in the management of patients with or at risk of AKI. However, these assays likely measure a mixture of different NGAL forms originating from different tissues. Systemic inflammation, commonly seen in critically ill patients, and several comorbidities contribute to the release of NGAL from haematopoietic and non-haematopoietic cells. The unpredictable release and complex nature of the molecule and the inability to specifically measure NGAL released by tubular cells have hampered its use a specific marker of AKI in heterogeneous critically ill populations. In this review, we describe the nature and cellular sources of NGAL, its biological role and diagnostic ability in AKI and the increasing concerns surrounding its diagnostic and clinical value.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.

          Although iron is required to sustain life, its free concentration and metabolism have to be tightly regulated. This is achieved through a variety of iron-binding proteins including transferrin and ferritin. During infection, bacteria acquire much of their iron from the host by synthesizing siderophores that scavenge iron and transport it into the pathogen. We recently demonstrated that enterochelin, a bacterial catecholate siderophore, binds to the host protein lipocalin 2 (ref. 5). Here, we show that this event is pivotal in the innate immune response to bacterial infection. Upon encountering invading bacteria the Toll-like receptors on immune cells stimulate the transcription, translation and secretion of lipocalin 2; secreted lipocalin 2 then limits bacterial growth by sequestrating the iron-laden siderophore. Our finding represents a new component of the innate immune system and the acute phase response to infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

            Introduction Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI. Methods We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection. Results Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P 0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method. Conclusions Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration ClinicalTrials.gov number NCT01209169.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.

              First identified as a neutrophil granule component, neutrophil gelatinase-associated lipocalin (NGAL; also called human neutrophil lipocalin, 24p3, uterocalin, or neu-related lipocalin) is a member of the lipocalin family of binding proteins. Putative NGAL ligands, including neutrophil chemotactic agents such as N-formylated tripeptides, have all been refuted by recent biochemical and structural results. NGAL has subsequently been implicated in diverse cellular processes, but without a characterized ligand, the molecular basis of these functions remained mysterious. Here we report that NGAL tightly binds bacterial catecholate-type ferric siderophores through a cyclically permuted, hybrid electrostatic/cation-pi interaction and is a potent bacteriostatic agent in iron-limiting conditions. We therefore propose that NGAL participates in the antibacterial iron depletion strategy of the innate immune system.
                Bookmark

                Author and article information

                Journal
                BPU
                Blood Purif
                10.1159/issn.0253-5068
                Blood Purification
                S. Karger AG
                0253-5068
                1421-9735
                2014
                October 2014
                21 August 2014
                : 37
                : 4
                : 304-310
                Affiliations
                aDepartment of Intensive Care, Austin Hospital, and bAustralian and New Zealand Intensive Care Research Centre, and cDepartment of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia; dSection of Anaesthesia and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
                Author notes
                *Prof. Rinaldo Bellomo, MD, FRACP, FCICM, Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC 3004 (Australia), E-Mail rinaldo.bellomo@monash.edu
                Author information
                https://orcid.org/0000-0001-8739-7896
                Article
                364937 Blood Purif 2014;37:304-310
                10.1159/000364937
                25170751
                37efd396-c9c0-46fc-966b-45038a726021
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 16 May 2014
                : 30 May 2014
                Page count
                Figures: 2, Pages: 7
                Categories
                In-Depth Review

                Cardiovascular Medicine,Nephrology
                Neutrophil gelatinase-associated lipocalin,Acute kidney injury,Intensive care,Inflammation

                Comments

                Comment on this article