Blog
About

33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On Yamabe type problems on Riemannian manifolds with boundary

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Let \((M,g)\) be a \(n-\)dimensional compact Riemannian manifold with boundary. We consider the Yamabe type problem \begin{equation} \left\{ \begin{array}{ll} -\Delta_{g}u+au=0 & \text{ on }M \\ \partial_\nu u+\frac{n-2}{2}bu= u^{{n\over n-2}\pm\varepsilon} & \text{ on }\partial M \end{array}\right. \end{equation} where \(a\in C^1(M),\) \(b\in C^1(\partial M)\), \(\nu\) is the outward pointing unit normal to \(\partial M \) and \(\varepsilon\) is a small positive parameter. We build solutions which blow-up at a point of the boundary as \(\varepsilon\) goes to zero. The blowing-up behavior is ruled by the function \(b-H_g ,\) where \(H_g\) is the boundary mean curvature.

          Related collections

          Author and article information

          Journal
          1506.09105

          Analysis, Geometry & Topology

          Comments

          Comment on this article