82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Follistatin, an Activin Antagonist, Ameliorates Renal Interstitial Fibrosis in a Rat Model of Unilateral Ureteral Obstruction

      BioMed Research International
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activin, a member of the TGF- β superfamily, regulates cell growth and differentiation in various cell types. Activin A acts as a negative regulator of renal development as well as tubular regeneration after renal injury. However, it remains unknown whether activin A is involved in renal fibrosis. To clarify this issue, we utilized a rat model of unilateral ureteral obstruction (UUO). The expression of activin A was significantly increased in the UUO kidneys compared to that in contralateral kidneys. Activin A was detected in glomerular mesangial cells and interstitial fibroblasts in normal kidneys. In UUO kidneys, activin A was abundantly expressed by interstitial α -SMA-positive myofibroblasts. Administration of recombinant follistatin, an activin antagonist, reduced the fibrotic area in the UUO kidneys. The number of proliferating cells in the interstitium, but not in the tubules, was significantly lower in the follistatin-treated kidneys. Expression of α -SMA, deposition of type I collagen and fibronectin, and CD68-positive macrophage infiltration were significantly suppressed in the follistatin-treated kidneys. These data suggest that activin A produced by interstitial fibroblasts acts as a potent profibrotic factor during renal fibrosis. Blockade of activin A action may be a novel approach for the prevention of renal fibrosis progression.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury.

          Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-beta1-induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-beta1-induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-beta1 in the regulation of EMT in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence that fibroblasts derive from epithelium during tissue fibrosis.

            Interstitial fibroblasts are principal effector cells of organ fibrosis in kidneys, lungs, and liver. While some view fibroblasts in adult tissues as nothing more than primitive mesenchymal cells surviving embryologic development, they differ from mesenchymal cells in their unique expression of fibroblast-specific protein-1 (FSP1). This difference raises questions about their origin. Using bone marrow chimeras and transgenic reporter mice, we show here that interstitial kidney fibroblasts derive from two sources. A small number of FSP1(+), CD34(-) fibroblasts migrate to normal interstitial spaces from bone marrow. More surprisingly, however, FSP1(+) fibroblasts also arise in large numbers by local epithelial-mesenchymal transition (EMT) during renal fibrogenesis. Both populations of fibroblasts express collagen type I and expand by cell division during tissue fibrosis. Our findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate. As a general mechanism, this change in fate highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention.

              Youhua Liu (2004)
              Mature tubular epithelial cells in adult kidney can undergo epithelial-to-mesenchymal transition (EMT), a phenotypic conversion that is fundamentally linked to the pathogenesis of renal interstitial fibrosis. Emerging evidence indicates that a large proportion of interstitial fibroblasts are actually originated from tubular epithelial cells via EMT in diseased kidney. Moreover, selective blockade of EMT in a mouse genetic model dramatically reduces fibrotic lesions after obstructive injury, underscoring a definite importance of EMT in renal fibrogenesis. Tubular EMT is proposed as an orchestrated, highly regulated process that consists of four key steps: (1) loss of epithelial cell adhesion; (2) de novo alpha-smooth muscle actin expression and actin reorganization; (3) disruption of tubular basement membrane; and (4) enhanced cell migration and invasion. Of the many factors that regulate EMT in different ways, transforming growth factor-beta1 is the most potent inducer that is capable of initiating and completing the entire EMT course, whereas hepatocyte growth factor and bone morphogenetic protein-7 act as EMT inhibitors both in vitro and in vivo. Multiple intracellular signaling pathways have been implicated in mediating EMT, in which Smad/integrin-linked kinase may play a central role. This article attempts to provide a comprehensive review of recent advances on understanding the pathologic significance, molecular mechanism, and therapeutic intervention of EMT in the setting of chronic renal fibrosis.
                Bookmark

                Author and article information

                Journal
                10.1155/2014/376191
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article