40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Methane dynamics regulated by microbial community response to permafrost thaw.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.

            Although of limited metabolic diversity, methanogenic archaea or methanogens possess great phylogenetic and ecological diversity. Only three types of methanogenic pathways are known: CO(2)-reduction, methyl-group reduction, and the aceticlastic reaction. Cultured methanogens are grouped into five orders based upon their phylogeny and phenotypic properties. In addition, uncultured methanogens that may represent new orders are present in many environments. The ecology of methanogens highlights their complex interactions with other anaerobes and the physical and chemical factors controlling their function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales.

              Understanding the dynamics of methane (CH4 ) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2 ) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr(-1) , which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up-to-date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial-scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process-based biogeochemistry models. © 2012 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                1476-4687
                0028-0836
                Oct 23 2014
                : 514
                : 7523
                Affiliations
                [1 ] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
                [2 ] Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia.
                [3 ] Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, USA.
                [4 ] Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, USA.
                [5 ] Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden.
                Article
                nature13798
                10.1038/nature13798
                25341787
                392b9bfc-1a9b-4212-ac83-a0b266d3bf73
                History

                Comments

                Comment on this article