34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of StearoylCoA Desaturase Activity Blocks Cell Cycle Progression and Induces Programmed Cell Death in Lung Cancer Cells

      research-article
      1 , 2 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the most frequent form of cancer. The survival rate for patients with metastatic lung cancer is ∼5%, hence alternative therapeutic strategies to treat this disease are critically needed. Recent studies suggest that lipid biosynthetic pathways, particularly fatty acid synthesis and desaturation, are promising molecular targets for cancer therapy. We have previously reported that inhibition of stearoylCoA desaturase-1 (SCD1), the enzyme that produces monounsaturated fatty acids (MUFA), impairs lung cancer cell proliferation, survival and invasiveness, and dramatically reduces tumor formation in mice. In this report, we show that inhibition of SCD activity in human lung cancer cells with the small molecule SCD inhibitor CVT-11127 reduced lipid synthesis and impaired proliferation by blocking the progression of cell cycle through the G 1/S boundary and by triggering programmed cell death. These alterations resulting from SCD blockade were fully reversed by either oleic (18:1n-9), palmitoleic acid (16:1n-7) or cis-vaccenic acid (18:1n-7) demonstrating that cis-MUFA are key molecules for cancer cell proliferation. Additionally, co-treatment of cells with CVT-11127 and CP-640186, a specific acetylCoA carboxylase (ACC) inhibitor, did not potentiate the growth inhibitory effect of these compounds, suggesting that inhibition of ACC or SCD1 affects a similar target critical for cell proliferation, likely MUFA, the common fatty acid product in the pathway. This hypothesis was further reinforced by the observation that exogenous oleic acid reverses the anti-growth effect of SCD and ACC inhibitors. Finally, exogenous oleic acid restored the globally decreased levels of cell lipids in cells undergoing a blockade of SCD activity, indicating that active lipid synthesis is required for the fatty acid-mediated restoration of proliferation in SCD1-inhibited cells. Altogether, these observations suggest that SCD1 controls cell cycle progression and apoptosis and, consequently, the overall rate of proliferation in cancer cells through MUFA-mediated activation of lipid synthesis.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fatty acid synthase and cancer: new application of an old pathway.

            Fatty acid synthase (FAS), the sole mammalian enzyme capable of de novo fatty acid synthesis, is highly expressed in most human carcinomas. FAS is associated with poor prognosis in breast and prostate cancer, is elaborated into the blood of cancer patients, and its inhibition is selectively cytotoxic to human cancer cells. Thus, FAS and fatty acid metabolism in cancer has become a focus for the potential diagnosis and treatment of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP.

              Protein kinase B (PKB/Akt) has been shown to play a role in protection from apoptosis, cell proliferation and cell growth. It is also involved in mediating the effects of insulin, such as lipogenesis, glucose uptake and conversion of glucose into fatty acids and cholesterol. Sterol-regulatory element binding proteins (SREBPs) are the major transcription factors that regulate genes involved in fatty acid and cholesterol synthesis. It has been postulated that constitutive activation of the phosphatidylinositol 3 kinase/Akt pathway may be involved in fatty acid and cholesterol accumulation that has been described in several tumour types. In this study, we have analysed changes in gene expression in response to Akt activation using DNA microarrays. We identified several enzymes involved in fatty acid and cholesterol synthesis as targets for Akt-regulated transcription. Expression of these enzymes has previously been shown to be regulated by the SREBP family of transcription factors. Activation of Akt induces synthesis of full-length SREBP-1 and SREBP-2 proteins as well as expression of fatty acid synthase (FAS), the key regulatory enzyme in lipid biosynthesis. We also show that Akt leads to the accumulation of nuclear SREBP-1 but not SREBP-2, and that activation of SREBP is required for Akt-induced activation of the FAS promoter. Finally, activation of Akt induces an increase in the concentration of cellular fatty acids as well as phosphoglycerides, the components of cellular membranes. Our data indicate that activation of SREBP by Akt leads to the induction of key enzymes of the cholesterol and fatty acid biosynthesis pathways, and thus membrane lipid biosynthesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                30 June 2010
                : 5
                : 6
                : e11394
                Affiliations
                [1 ]Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
                [2 ]Biology, Gilead Sciences Inc., Palo Alto, California, United States of America
                University of Barcelona, Spain
                Author notes

                Conceived and designed the experiments: JWC RAI. Performed the experiments: DH RAI. Analyzed the data: DH JWC RAI. Contributed reagents/materials/analysis tools: JWC RAI. Wrote the paper: JWC RAI.

                Article
                10-PONE-RA-17849R1
                10.1371/journal.pone.0011394
                2894866
                20613975
                dc849f92-f933-4db8-a753-5d074d495729
                Hess et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 April 2010
                : 2 June 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Biochemistry
                Nutrition
                Oncology/Lung Cancer
                Pharmacology/Drug Development

                Uncategorized
                Uncategorized

                Comments

                Comment on this article