64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wheat Genomics: Present Status and Future Prospects

      International Journal of Plant Genomics
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wheat (Triticum aestivumL.), with a large genome (16000 Mb) and high proportion ( ∼ 80%) of repetitive sequences, has been a difficult crop for genomics research. However, the availability of extensive cytogenetics stocks has been an asset, which facilitated significant progress in wheat genomic research in recent years. For instance, fairly dense molecular maps (both genetic and physical maps) and a large set of ESTs allowed genome-wide identification of gene-rich and gene-poor regions as well as QTL including eQTL. The availability of markers associated with major economic traits also allowed development of major programs on marker-assisted selection (MAS) in some countries, and facilitated map-based cloning of a number of genes/QTL. Resources for functional genomics including TILLING and RNA interference (RNAi) along with some new approaches like epigenetics and association mapping are also being successfully used for wheat genomics research. BAC/BIBAC libraries for the subgenome D and some individual chromosomes have also been prepared to facilitate sequencing of gene space. In this brief review, we discuss all these advances in some detail, and also describe briefly the available resources, which can be used for future genomics research in this important crop.

          Related collections

          Most cited references481

          • Record: found
          • Abstract: found
          • Article: not found

          Genome plasticity a key factor in the success of polyploid wheat under domestication.

          Wheat was domesticated about 10,000 years ago and has since spread worldwide to become one of the major crops. Its adaptability to diverse environments and end uses is surprising given the diversity bottlenecks expected from recent domestication and polyploid speciation events. Wheat compensates for these bottlenecks by capturing part of the genetic diversity of its progenitors and by generating new diversity at a relatively fast pace. Frequent gene deletions and disruptions generated by a fast replacement rate of repetitive sequences are buffered by the polyploid nature of wheat, resulting in subtle dosage effects on which selection can operate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.

            Advanced backcross QTL analysis is proposed as a method of combining QTL analysis with variety development. It is tailored for the discovery and transfer of valuable QTL alleles from unadapted donor lines (e.g., land races, wild species) into established elite inbred lines. Following this strategy, QTL analysis is delayed until the BC2 or BC3 generation and, during the development of these populations, negative selection is exercised to reduce the frequency of deleterious donor alleles. Simulations suggest that advanced backcross QTL analysis will be effective in detecting additive, dominant, partially dominant, or overdominant QTLs. Epistatic QTLs or QTLs with gene actions ranging from recessive to additive will be detected with less power than in selfing generations. QTL-NILs can be derived from advanced backcross populations in one or two additional generations and utilized to verify QTL activity. These same QTL-NILs also represent commercial inbreds improved (over the original recurrent inbred line) for one or more quantitative traits. The time lapse from QTL discovery to construction and testing of improved QTL-NILs is minimal (1-2 years). If successfully employed, advanced backcross QTL analysis can open the door to exploiting unadapted and exotic germplasm for the quantitative trait improvement of a number of crop plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure.

              Linkage disequilibrium can be used for identifying associations between traits of interest and genetic markers. This study used mapped diversity array technology (DArT) markers to find associations with resistance to stem rust, leaf rust, yellow rust, and powdery mildew, plus grain yield in five historical wheat international multienvironment trials from the International Maize and Wheat Improvement Center (CIMMYT). Two linear mixed models were used to assess marker-trait associations incorporating information on population structure and covariance between relatives. An integrated map containing 813 DArT markers and 831 other markers was constructed. Several linkage disequilibrium clusters bearing multiple host plant resistance genes were found. Most of the associated markers were found in genomic regions where previous reports had found genes or quantitative trait loci (QTL) influencing the same traits, providing an independent validation of this approach. In addition, many new chromosome regions for disease resistance and grain yield were identified in the wheat genome. Phenotyping across up to 60 environments and years allowed modeling of genotype x environment interaction, thereby making possible the identification of markers contributing to both additive and additive x additive interaction effects of traits.
                Bookmark

                Author and article information

                Journal
                10.1155/2008/896451
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article