24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Role of asymmetric dimethylarginine in inflammatory reactions by angiotensin II.

      Journal of Vascular Research
      Amidohydrolases, metabolism, Angiotensin II, toxicity, Angiotensin II Type 1 Receptor Blockers, pharmacology, Arginine, analogs & derivatives, analysis, physiology, Cell Adhesion, drug effects, Cells, Cultured, Culture Media, Conditioned, chemistry, Endothelial Cells, Endothelium, Vascular, cytology, Gene Expression Regulation, Humans, Interleukin-8, biosynthesis, Losartan, Monocytes, NF-kappa B, Nitrates, Nitric Oxide, Nitrites, Protein-Arginine N-Methyltransferases, RNA, Messenger, Reactive Oxygen Species, Receptors, Interleukin-8B, genetics, Repressor Proteins, Reverse Transcriptase Polymerase Chain Reaction, Tumor Necrosis Factor-alpha, Umbilical Veins, Vasculitis, chemically induced, Vasodilation

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous investigations have demonstrated that angiotensin (Ang) II induces inflammatory reactions and asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, might be a novel inflammatory factor. Endothelial cell activation was induced by incubation with Ang II or ADMA. Incubation with Ang II (10(-6) M) for 24 h elevated the levels of ADMA and decreased the levels of nitrite/nitrate concomitantly with a significant increase in the expression of protein arginine methyltransferase and a decrease in the activity of dimethylarginine dimethylaminohydrolase (DDAH). Exposure to Ang II (10(-6) M for 24 h) also enhanced intracellular ROS elaboration and the levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-8, upregulated chemokine receptor CXCR2 mRNA expression, increased adhesion of endothelial cells to monocytes and induced a significant increase in the activity of nuclear factor (NF)-kappaB, which was attenuated by pretreatment with the Ang II receptor blocker losartan (1, 3 and 10 muM). Exogenous ADMA (30 microM) also increased ROS generation and the levels of TNF-alpha and IL-8, decreased the levels of nitrite/nitrate, upregulated CXCR2 gene expression, increased endothelial cell binding with monocytes and activated the NF-kappaB pathway, which was inhibited by pretreatment with losartan or L-arginine. These data suggest that ADMA is a potential proinflammatory factor and may be involved in the inflammatory reaction induced by Ang II. Copyright 2007 S. Karger AG, Basel.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular inflammation and the renin-angiotensin system.

          It is now well established that vascular inflammation is an independent risk factor for the development of atherosclerosis. In otherwise healthy patients, chronic elevations of circulating interleukin-6 or its biomarkers are predictors for increased risk in the development and progression of ischemic heart disease. Although multifactorial in etiology, vascular inflammation produces atherosclerosis by the continuous recruitment of circulating monocytes into the vessel wall and by contributing to an oxidant-rich inflammatory milieu that induces phenotypic changes in resident (noninflammatory) cells. In addition, the renin-angiotensin system (RAS) has important modulatory activities in the atherogenic process. Recent work has shown that angiotensin II (Ang II) has significant proinflammatory actions in the vascular wall, inducing the production of reactive oxygen species, inflammatory cytokines, and adhesion molecules. These latter effects on gene expression are mediated, at least in part, through the cytoplasmic nuclear factor-kappaB transcription factor. Through these actions, Ang II augments vascular inflammation, induces endothelial dysfunction, and, in so doing, enhances the atherogenic process. Our recent studies have defined a molecular mechanism for a biological positive-feedback loop that explains how vascular inflammation can be self-sustaining through upregulation of the vessel wall Ang II tone. Ang II produced locally by the inflamed vessel induces the synthesis and secretion of interleukin-6, a cytokine that induces synthesis of angiotensinogen in the liver through a janus kinase (JAK)/signal transducer and activator of transcription (STAT)-3 pathway. Enhanced angiotensinogen production, in turn, supplies more substrate to the activated vascular RAS, where locally produced Ang II synergizes with oxidized lipid to perpetuate atherosclerotic vascular inflammation. These observations suggest that one mechanism by which RAS antagonists prevent atherosclerosis is by reducing vascular inflammation. Moreover, antagonizing the vascular nuclear factor-kappaB and/or hepatic JAK/STAT pathways may modulate the atherosclerotic process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor.

            There is abundant evidence that the endothelium plays a crucial role in the maintenance of vascular tone and structure. One of the major endothelium-derived vasoactive mediators is nitric oxide (NO). Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase. ADMA inhibits vascular NO production at concentrations found in pathophysiological conditions (i.e., 3-15 micromol/l); ADMA also causes local vasoconstriction when it is infused intraarterially. The biochemical and physiological pathways related to ADMA are now well understood: dimethylarginines are the result of the degradation of methylated proteins; the methyl group is derived from S-adenosylmethionine. Both ADMA and its regioisomer, SDMA, are eliminated from the body by renal excretion, whereas only ADMA, but not SDMA, is metabolized via hydrolytic degradation to citrulline and dimethylamine by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). DDAH activity and/or expression may therefore contribute to the pathogenesis of endothelial dysfunction in various diseases. ADMA is increased in the plasma of humans with hypercholesterolemia, atherosclerosis, hypertension, chronic renal failure, and chronic heart failure. Increased ADMA levels are associated with reduced NO synthesis as assessed by impaired endothelium-dependent vasodilation. In several prospective and cross-sectional studies, ADMA evolved as a marker of cardiovascular risk. With our increasing knowledge of the role of ADMA in the pathogenesis of cardiovascular disease, ADMA is becoming a goal for pharmacotherapeutic intervention. Among other treatments, the administration of L-arginine has been shown to improve endothelium-dependent vascular function in subjects with high ADMA levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells.

              The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.
                Bookmark

                Author and article information

                Comments

                Comment on this article