21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unfinished business after five decades of ozone-layer science and policy

      , ,
      Nature Communications
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Montreal Protocol has begun to heal the Antarctic ozone hole and avoided more global warming than any other treaty. Still, recent research shows that new unexpected emissions of several chlorofluorocarbons, carbon tetrachloride, and hydrofluorocarbons, are undermining the Protocol’s success. It is time for policymakers to plug the holes in the ozone hole treaty.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          The importance of the Montreal Protocol in protecting climate.

          The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer is a landmark agreement that has successfully reduced the global production, consumption, and emissions of ozone-depleting substances (ODSs). ODSs are also greenhouse gases that contribute to the radiative forcing of climate change. Using historical ODSs emissions and scenarios of potential emissions, we show that the ODS contribution to radiative forcing most likely would have been much larger if the ODS link to stratospheric ozone depletion had not been recognized in 1974 and followed by a series of regulations. The climate protection already achieved by the Montreal Protocol alone is far larger than the reduction target of the first commitment period of the Kyoto Protocol. Additional climate benefits that are significant compared with the Kyoto Protocol reduction target could be achieved by actions under the Montreal Protocol, by managing the emissions of substitute fluorocarbon gases and/or implementing alternative gases with lower global warming potentials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An unexpected and persistent increase in global emissions of ozone-depleting CFC-11

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Acceleration of global N2O emissions seen from two decades of atmospheric inversion

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2020
                August 26 2020
                December 2020
                : 11
                : 1
                Article
                10.1038/s41467-020-18052-0
                7f2753ca-38e8-464c-980b-abb3362d548a
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article