37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT

      Nature genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.

          The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.

              We have devised a simple and efficient cDNA cloning strategy that overcomes many of the difficulties encountered in obtaining full-length cDNA clones of low-abundance mRNAs. In essence, cDNAs are generated by using the DNA polymerase chain reaction technique to amplify copies of the region between a single point in the transcript and the 3' or 5' end. The minimum information required for this amplification is a single short stretch of sequence within the mRNA to be cloned. Since the cDNAs can be produced in one day, examined by Southern blotting the next, and readily cloned, large numbers of full-length cDNA clones of rare transcripts can be rapidly produced. Moreover, separation of amplified cDNAs by gel electrophoresis allows precise selection by size prior to cloning and thus facilitates the isolation of cDNAs representing variant mRNAs, such as those produced by alternative splicing or by the use of alternative promoters. The efficacy of this method was demonstrated by isolating cDNA clones of mRNA from int-2, a mouse gene that expresses four different transcripts at low abundance, the longest of which is approximately 2.9 kilobases. After less than 0.05% of the cDNAs produced had been screened, 29 independent int-2 clones were isolated. Sequence analysis demonstrated that the 3' and 5' ends of all four int-2 mRNAs were accurately represented by these clones.
                Bookmark

                Author and article information

                Journal
                10.1038/ng1196-277
                http://www.springer.com/tdm

                Comments

                Comment on this article