40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Configurational entropy of Wigner crystals

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a theoretical study of classical Wigner crystals in two- and three-dimensional isotropic parabolic traps aiming at understanding and quantifying the configurational uncertainty due to the presence of multiple stable configurations. Strongly interacting systems of classical charged particles confined in traps are known to form regular structures. The number of distinct arrangements grows very rapidly with the number of particles, many of these arrangements have quite low occurrence probabilities and often the lowest-energy structure is not the most probable one. We perform numerical simulations on systems containing up to 100 particles interacting through Coulomb and Yukawa forces, and show that the total number of metastable configurations is not a well defined and representative quantity. Instead, we propose to rely on the configurational entropy as a robust and objective measure of uncertainty. The configurational entropy can be understood as the logarithm of the effective number of states; it is insensitive to the presence of overlooked low-probability states and can be reliably determined even within a limited time of a simulation or an experiment.

          Related collections

          Author and article information

          Journal
          10.1088/0953-8984/23/7/075302
          1204.5998

          Plasma physics,Condensed matter
          Plasma physics, Condensed matter

          Comments

          Comment on this article