33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From The Cover: Increased salinization of fresh water in the northeastern United States

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references2

          • Record: found
          • Abstract: not found
          • Article: not found

          Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring.

            The archaeal community in a sulfide- and sulfur-rich spring with a stream water salinity of 0.7 to 1.0% in southwestern Oklahoma was studied by cloning and sequencing of 16S rRNA genes. Two clone libraries were constructed from sediments obtained at the hydrocarbon-exposed source of the spring and the microbial mats underlying the water flowing from the spring source. Analysis of 113 clones from the source library and 65 clones from the mat library revealed that the majority of clones belonged to the kingdom Euryarchaeota, while Crenarchaeota represented less than 10% of clones. Euryarchaeotal clones belonged to the orders Methanomicrobiales, Methanosarcinales, and Halobacteriales, as well as several previously described lineages with no pure-culture representatives. Those within the Halobacteriales represented 36% of the mat library and 4% of the source library. All cultivated members of this order are obligately aerobic halophiles. The majority of halobacterial clones encountered were not affiliated with any of the currently described genera of the family Halobacteriaceae. Measurement of the salinity at various locations at the spring, as well as along vertical gradients, revealed that soils adjacent to spring mats have a much higher salinity (NaCl concentrations as high as 32%) and a lower moisture content than the spring water, presumably due to evaporation. By use of a high-salt-plus-antibiotic medium, several halobacterial isolates were obtained from the microbial mats. Analysis of 16S rRNA genes indicated that all the isolates were members of the genus Haloferax. All isolates obtained grew at a wide range of salt concentrations, ranging from 6% to saturation, and all were able to reduce elemental sulfur to sulfide. We reason that the unexpected abundance of halophilic Archaea in such a low-salt, highly reduced environment could be explained by their relatively low salt requirement, which could be satisfied in specific locations of the shallow spring via evaporation, and their ability to grow under the prevalent anaerobic conditions in the spring, utilizing zero-valent sulfur compounds as electron acceptors. This study demonstrates that members of the Halobacteriales are not restricted to their typical high-salt habitats, and we propose a role for the Halobacteriales in sulfur reduction in natural ecosystems.
              Bookmark

              Author and article information

              Journal
              Proceedings of the National Academy of Sciences
              Proceedings of the National Academy of Sciences
              Proceedings of the National Academy of Sciences
              0027-8424
              1091-6490
              September 20 2005
              September 12 2005
              : 102
              : 38
              : 13517-13520
              Article
              10.1073/pnas.0506414102
              4b1ea1b9-d243-4555-a41b-4c451c663981
              © 2005
              History

              Comments

              Comment on this article