23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spotlight on botulinum toxin and its potential in the treatment of stroke-related spasticity.

      Drug Design, Development and Therapy
      botulinum toxin, incobotulinumtoxinA, onabotulinumtoxinA, poststroke spasticity, rimabotulinumtoxinB

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Poststroke spasticity affects up to one-half of stroke patients and has debilitating effects, contributing to diminished activities of daily living, quality of life, pain, and functional impairments. Botulinum toxin (BoNT) is proven to be safe and effective in the treatment of focal poststroke spasticity. The aim of this review is to highlight BoNT and its potential in the treatment of upper and lower limb poststroke spasticity. We review evidence for the efficacy of BoNT type A and B formulations and address considerations of optimal injection technique, patient and caregiver satisfaction, and potential adverse effects of BoNT.

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25.

          Neurotransmitter release is potently blocked by a group of structurally related toxin proteins produced by Clostridium botulinum. Botulinum neurotoxin type B (BoNT/B) and tetanus toxin (TeTx) are zinc-dependent proteases that specifically cleave synaptobrevin (VAMP), a membrane protein of synaptic vesicles. Here we report that inhibition of transmitter release from synaptosomes caused by botulinum neurotoxin A (BoNT/A) is associated with the selective proteolysis of the synaptic protein SNAP-25. Furthermore, isolated or recombinant L chain of BoNT/A cleaves SNAP-25 in vitro. Cleavage occurred near the carboxyterminus and was sensitive to divalent cation chelators. In addition, a glutamate residue in the BoNT/A L chain, presumably required to stabilize a water molecule in the zinc-containing catalytic centre, was required for proteolytic activity. These findings demonstrate that BoNT/A acts as a zinc-dependent protease that selectively cleaves SNAP-25. Thus, a second component of the putative fusion complex mediating synaptic vesicle exocytosis is targeted by a clostridial neurotoxin.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The control of muscle tone, reflexes, and movement: Robert Wartenbeg Lecture

            J LANCE (1980)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurence and clinical predictors of spasticity after ischemic stroke.

              There is currently no consensus on (1) the percentage of patients who develop spasticity after ischemic stroke, (2) the relation between spasticity and initial clinical findings after acute stroke, and (3) the impact of spasticity on activities of daily living and health-related quality of life. In a prospective cohort study, 301 consecutive patients with clinical signs of central paresis due to a first-ever ischemic stroke were examined in the acute stage and 6 months later. At both times, the degree and pattern of paresis and muscle tone, the Barthel Index, and the EQ-5D score, a standardized instrument of health-related quality of life, were evaluated. Spasticity was assessed on the Modified Ashworth Scale and defined as Modified Ashworth Scale >1 in any of the examined joints. Two hundred eleven patients (70.1%) were reassessed after 6 months. Of these, 42.6% (n=90) had developed spasticity. A more severe degree of spasticity (Modified Ashworth Scale >or=3) was observed in 15.6% of all patients. The prevalence of spasticity did not differ between upper and lower limbs, but in the upper limb muscles, higher degrees of spasticity (Modified Ashworth Scale >or=3) were more frequently (18.9%) observed than in the lower limbs (5.5%). Regression analysis used to test the differences between upper and lower limbs showed that patients with more severe paresis in the proximal and distal limb muscles had a higher risk for developing spasticity (P
                Bookmark

                Author and article information

                Journal
                27022247
                4789850
                10.2147/DDDT.S80804

                botulinum toxin,incobotulinumtoxinA,onabotulinumtoxinA,poststroke spasticity,rimabotulinumtoxinB

                Comments

                Comment on this article