30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Camouflage mismatch in seasonal coat color due to decreased snow duration.

      Proceedings of the National Academy of Sciences of the United States of America
      Adaptation, Physiological, Animals, Hares, physiology, Models, Biological, Montana, Seasons, Skin Pigmentation, Snow

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most examples of seasonal mismatches in phenology span multiple trophic levels, with timing of animal reproduction, hibernation, or migration becoming detached from peak food supply. The consequences of such mismatches are difficult to link to specific future climate change scenarios because the responses across trophic levels have complex underlying climate drivers often confounded by other stressors. In contrast, seasonal coat color polyphenism creating camouflage against snow is a direct and potentially severe type of seasonal mismatch if crypsis becomes compromised by the animal being white when snow is absent. It is unknown whether plasticity in the initiation or rate of coat color change will be able to reduce mismatch between the seasonal coat color and an increasingly snow-free background. We find that natural populations of snowshoe hares exposed to 3 y of widely varying snowpack have plasticity in the rate of the spring white-to-brown molt, but not in either the initiation dates of color change or the rate of the fall brown-to-white molt. Using an ensemble of locally downscaled climate projections, we also show that annual average duration of snowpack is forecast to decrease by 29-35 d by midcentury and 40-69 d by the end of the century. Without evolution in coat color phenology, the reduced snow duration will increase the number of days that white hares will be mismatched on a snowless background by four- to eightfold by the end of the century. This novel and visually compelling climate change-induced stressor likely applies to >9 widely distributed mammals with seasonal coat color.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Generating surfaces of daily meteorological variables over large regions of complex terrain

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coupled dynamics of body mass and population growth in response to environmental change.

            Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward a synthetic understanding of the role of phenology in ecology and evolution.

              Phenology affects nearly all aspects of ecology and evolution. Virtually all biological phenomena-from individual physiology to interspecific relationships to global nutrient fluxes-have annual cycles and are influenced by the timing of abiotic events. Recent years have seen a surge of interest in this topic, as an increasing number of studies document phenological responses to climate change. Much recent research has addressed the genetic controls on phenology, modelling techniques and ecosystem-level and evolutionary consequences of phenological change. To date, however, these efforts have tended to proceed independently. Here, we bring together some of these disparate lines of inquiry to clarify vocabulary, facilitate comparisons among habitat types and promote the integration of ideas and methodologies across different disciplines and scales. We discuss the relationship between phenology and life history, the distinction between organismal- and population-level perspectives on phenology and the influence of phenology on evolutionary processes, communities and ecosystems. Future work should focus on linking ecological and physiological aspects of phenology, understanding the demographic effects of phenological change and explicitly accounting for seasonality and phenology in forecasts of ecological and evolutionary responses to climate change.
                Bookmark

                Author and article information

                Journal
                23589881
                3645584
                10.1073/pnas.1222724110

                Chemistry
                Adaptation, Physiological,Animals,Hares,physiology,Models, Biological,Montana,Seasons,Skin Pigmentation,Snow

                Comments

                Comment on this article