139
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.

      Nature nanotechnology

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because two-dimensional MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions. Theory predicts that many stacked MX2 heterostructures form type II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting. Here, we report the first experimental observation of ultrafast charge transfer in photoexcited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel two-dimensional devices for optoelectronics and light harvesting.

          Related collections

          Author and article information

          Journal
          25150718
          10.1038/nnano.2014.167

          Comments

          Comment on this article