48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo

      , , , ,
      Neuron
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary Sharp wave-ripple (SWR) oscillations play a key role in memory consolidation during non-rapid eye movement sleep, immobility, and consummatory behavior. However, whether temporally modulated synaptic excitation or inhibition underlies the ripples is controversial. To address this question, we performed simultaneous recordings of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) and local field potentials (LFPs) in the CA1 region of awake mice in vivo. During SWRs, inhibition dominated over excitation, with a peak conductance ratio of 4.1 ± 0.5. Furthermore, the amplitude of SWR-associated IPSCs was positively correlated with SWR magnitude, whereas that of EPSCs was not. Finally, phase analysis indicated that IPSCs were phase-locked to individual ripple cycles, whereas EPSCs were uniformly distributed in phase space. Optogenetic inhibition indicated that PV+ interneurons provided a major contribution to SWR-associated IPSCs. Thus, phasic inhibition, but not excitation, shapes SWR oscillations in the hippocampal CA1 region in vivo.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Awake hippocampal sharp-wave ripples support spatial memory.

          The hippocampus is critical for spatial learning and memory. Hippocampal neurons in awake animals exhibit place field activity that encodes current location, as well as sharp-wave ripple (SWR) activity during which representations based on past experiences are often replayed. The relationship between these patterns of activity and the memory functions of the hippocampus is poorly understood. We interrupted awake SWRs in animals learning a spatial alternation task. We observed a specific learning and performance deficit that persisted throughout training. This deficit was associated with awake SWR activity, as SWR interruption left place field activity and post-experience SWR reactivation intact. These results provide a link between awake SWRs and hippocampal memory processes, which suggests that awake replay of memory-related information during SWRs supports learning and memory-guided decision-making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience.

            The correlated activity of rat hippocampal pyramidal cells during sleep reflects the activity of those cells during earlier spatial exploration. Now the patterns of activity during sleep have also been found to reflect the order in which the cells fired during spatial exploration. This relation was reliably stronger for sleep after the behavioral session than before it; thus, the activity during sleep reflects changes produced by experience. This memory for temporal order of neuronal firing could be produced by an interaction between the temporal integration properties of long-term potentiation and the phase shifting of spike activity with respect to the hippocampal theta rhythm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-frequency network oscillation in the hippocampus.

              Pyramidal cells in the CA1 hippocampal region displayed transient network oscillations (200 hertz) during behavioral immobility, consummatory behaviors, and slow-wave sleep. Simultaneous, multisite recordings revealed temporal and spatial coherence of neuronal activity during population oscillations. Participating pyramidal cells discharged at a rate lower than the frequency of the population oscillation, and their action potentials were phase locked to the negative phase of the simultaneously recorded oscillatory field potentials. In contrast, interneurons discharged at population frequency during the field oscillations. Thus, synchronous output of cooperating CA1 pyramidal cells may serve to induce synaptic enhancement in target structures of the hippocampus.
                Bookmark

                Author and article information

                Journal
                Neuron
                Neuron
                Elsevier BV
                08966273
                January 2017
                January 2017
                : 93
                : 2
                : 308-314
                Article
                10.1016/j.neuron.2016.12.018
                60359d90-80ff-44cd-aa8d-df95f4a13950
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article