22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure to galactic cosmic radiation compromises DNA repair and increases the potential for oncogenic chromosomal rearrangement in bronchial epithelial cells

      Scientific Reports
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins.

          By expressing two genes (hTERT and Cdk4), we have developed a method to reproducibly generate continuously replicating human bronchial epithelial cell (HBEC) lines that provide a novel resource to study the molecular pathogenesis of lung cancer and the differentiation of bronchial epithelial cells. Twelve human bronchial epithelial biopsy specimens obtained from persons with and without lung cancer were placed into short-term culture and serially transfected with retroviral constructs containing cyclin-dependent kinase (Cdk) 4 and human telomerase reverse transcriptase (hTERT), resulting in continuously growing cultures. The order of introduction of Cdk4 and hTERT did not appear to be important; however, transfection of either gene alone did not result in immortalization. Although they could be cloned, the immortalized bronchial cells did not form colonies in soft agar or tumors in nude mice. The immortalized HBECs have epithelial morphology; express epithelial markers cytokeratins 7, 14, 17, and 19, the stem cell marker p63, and high levels of p16(INK4a); and have an intact p53 checkpoint pathway. Cytogenetic analysis and array comparative genomic hybridization profiling show immortalized HBECs to have duplication of parts of chromosomes 5 and 20. Microarray gene expression profiling demonstrates that the Cdk4/hTERT-immortalized bronchial cell lines clustered together and with nonimmortalized bronchial cells, distinct from lung cancer cell lines. We also immortalized several parental cultures with viral oncoproteins human papilloma virus type 16 E6/E7 with and without hTERT, and these cells exhibited loss of the p53 checkpoint and significantly different gene expression profiles compared with Cdk4/hTERT-immortalized HBECs. These HBEC lines are a valuable new tool for studying of the pathogenesis of lung cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

            The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage.

              DNA double-strand breaks (DSBs) are common lesions that continually threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including cell death. Misrepair is also fraught with danger, especially inappropriate end-joining events, which commonly underlie oncogenic transformation and can scramble the genome. Canonically, cells employ two basic mechanisms to repair DSBs: homologous recombination (HR) and the classical nonhomologous end-joining pathway (cNHEJ). More recent experiments identified a highly error-prone NHEJ pathway, termed alternative NHEJ (aNHEJ), which operates in both cNHEJ-proficient and cNHEJ-deficient cells. aNHEJ is now recognized to catalyze many genome rearrangements, some leading to oncogenic transformation. Here, we review the mechanisms of cNHEJ and aNHEJ, their interconnections with the DNA damage response (DDR), and the mechanisms used to determine which of the three DSB repair pathways is used to heal a particular DSB. We briefly review recent clinical applications involving NHEJ and NHEJ inhibitors.
                Bookmark

                Author and article information

                Journal
                10.1038/s41598-018-29350-5
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article