22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring a Chemotactic Role for EVs from Progenitor Cell Populations of Human Exfoliated Deciduous Teeth for Promoting Migration of Naïve BMSCs in Bone Repair Process

      1 , 2 , 1 , 1
      Stem Cells International
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mobilization of naïve bone marrow mesenchymal stromal cells (BMSCs) is crucial to desired bone regeneration in both orthopedic and dental contexts. In such conditions, mesenchymal progenitor cell populations from human exfoliated deciduous teeth (SHEDs) present advantageous multipotent properties with easy accessibility which makes them a good candidate in both bone and periodontal tissue regeneration. Extracellular vesicles (EVs) are a functional membranous structure which could participate in multiple cell interactions and imitate the biological functions of their parenting cells largely. To assess their ability to mobilize naïve BMSCs in the bone repair process, Nanosight Tracking Analysis (NTA) and Enzyme-Linked Immunosorbent Assays (ELISA) were performed to illustrate the composition and functional contents of EV samples derived from SHEDs with different culturing time (24 h, 48 h, and 72 h). Afterwards, the Boyden chamber assay was performed to compare their capacity for mobilizing naïve BMSCs. One-way analysis of variance (ANOVA) with a post hoc Turkey test was performed for statistical analysis. SHEDs-derived EVs collected from 24 h, 48 h, and 72 h time points, namely, EV24, EV48, and EV72, were mainly secreted as exosomes and tended to reform into smaller size as a result of sonication indicated by NTA results. Moreover, different EV groups were found to be abundant with multiple growth factors including transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), and fibroblast growth factor-2 (FGF-2) given the detections through ELISA. Boyden chamber assays implied the migratory efficiency of BMSCs driven by EVs at varying concentrations. However, the results showed that migration of BMSCs driven by different EV groups was not statistically significant even with chemotactic factors contained ( P > 0.05 ). Taken together, these data suggest that EVs derived from SHEDs are secreted in functional forms and present a potential of mobilizing naïve BMSCs, which may propose their relevance in assisting bone regeneration.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Shedding light on the cell biology of extracellular vesicles

          Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively. They are present in biological fluids and are involved in multiple physiological and pathological processes. Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis.

            Tumor-secreted extracellular vesicles (EVs) are critical mediators of intercellular communication between tumor cells and stromal cells in local and distant microenvironments. Accordingly, EVs play an essential role in both primary tumor growth and metastatic evolution. EVs orchestrate multiple systemic pathophysiological processes, such as coagulation, vascular leakiness, and reprogramming of stromal recipient cells to support pre-metastatic niche formation and subsequent metastasis. Clinically, EVs may be biomarkers and novel therapeutic targets for cancer progression, particularly for predicting and preventing future metastatic development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of immune responses by extracellular vesicles.

              Extracellular vesicles, including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release extracellular vesicles, which then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is thought that extracellular vesicles have important roles in intercellular communication, both locally and systemically, as they transfer their contents, including proteins, lipids and RNAs, between cells. Extracellular vesicles are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, extracellular vesicle-based therapeutics are being developed and clinically tested for the treatment of inflammatory diseases, autoimmune disorders and cancer. Given the tremendous therapeutic potential of extracellular vesicles, this Review focuses on their role in modulating immune responses, as well as their potential therapeutic applications.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Stem Cells International
                Stem Cells International
                Hindawi Limited
                1687-9678
                1687-966X
                March 17 2021
                March 17 2021
                : 2021
                : 1-7
                Affiliations
                [1 ]Department of Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
                [2 ]Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
                Article
                10.1155/2021/6681771
                eec15da9-df81-4ed7-a2b5-a975e0c667f0
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article