51
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obesity as a risk and severity factor in rheumatic diseases (autoimmune chronic inflammatory diseases).

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The growing body of evidence recognizing the adipose tissue (AT) as an active endocrine organ secreting bioactive mediators involved in metabolic and inflammatory disorders, together with the global epidemic of overweight and obesity, rise obesity as a hot topic of current research. The chronic state of low-grade inflammation present in the obese condition and the multiple pleiotropic effects of adipokines on the immune system has been implicated in the pathogenesis of several inflammatory conditions including rheumatic autoimmune and inflammatory diseases. We will discuss the main relevant evidences on the role of the AT on immune and inflammatory networks and the more recent evidences regarding the effects of obesity on the incidence and outcomes of the major autoimmune chronic inflammatory diseases.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression.

          Nutritional deprivation suppresses immune function. The cloning of the obese gene and identification of its protein product leptin has provided fundamental insight into the hypothalamic regulation of body weight. Circulating levels of this adipocyte-derived hormone are proportional to fat mass but maybe lowered rapidly by fasting or increased by inflammatory mediators. The impaired T-cell immunity of mice now known to be defective in leptin (ob/ob) or its receptor (db/db), has never been explained. Impaired cell-mediated immunity and reduced levels of leptin are both features of low body weight in humans. Indeed, malnutrition predisposes to death from infectious diseases. We report here that leptin has a specific effect on T-lymphocyte responses, differentially regulating the proliferation of naive and memory T cells. Leptin increased Th1 and suppressed Th2 cytokine production. Administration of leptin to mice reversed the immunosuppressive effects of acute starvation. Our findings suggest a new role for leptin in linking nutritional status to cognate cellular immune function, and provide a molecular mechanism to account for the immune dysfunction observed in starvation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-6: from basic science to medicine--40 years in immunology.

            This essay summarizes my 40 years of research in immunology. As a young physician, I encountered a patient with Waldenström's macroglobulinemia, and this inspired me to study the structure of IgM. I began to ask how antibody responses are regulated. In the late 1960s, the essential role of T cells in antibody production had been reported. In search of molecules mediating T cell helper function, I discovered activities in the culture supernatant of T cells that induced proliferation and differentiation of B cells. This led to my life's work: studying one of those factors, interleukin-6 (IL-6). To my surprise, IL-6 turned out to play additional roles, including myeloma growth factor and hepatocyte-stimulating factor activities. More importantly, it was involved in a number of diseases, such as rheumatoid arthritis and Castleman's disease. I feel exceptionally fortunate that my work not only revealed the framework of cytokine signaling, including identification of the IL-6 receptor, gp130, NF-IL6, STAT3, and SOCS-1, but also led to the development of a new therapy for chronic inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistin, an adipokine with potent proinflammatory properties.

              The adipokine resistin is suggested to be an important link between obesity and insulin resistance. In the present study, we assessed the impact of resistin as inflammatogenic cytokine in the setting of arthritis. In vitro experiments on human PBMC were performed to assess cytokine response and transcription pathways of resistin-induced inflammation. Proinflammatory properties of resistin were evaluated in animal model by intra-articular injection of resistin followed by histological evaluation of the joint. Levels of resistin were assessed by ELISA in 74 paired blood and synovial fluid samples of patients with rheumatoid arthritis. Results were compared with the control group comprised blood samples from 34 healthy individuals and 21 synovial fluids from patients with noninflammatory joint diseases. We now show that resistin displays potent proinflammatory properties by 1) strongly up-regulating IL-6 and TNF-alpha, 2) responding to TNF-alpha challenge, 3) enhancing its own activity by a positive feedback, and finally 4) inducing arthritis when injected into healthy mouse joints. Proinflammatory properties of resistin were abrogated by NF-kappaB inhibitor indicating the importance of NF-kappaB signaling pathway for resistin-induced inflammation. Resistin is also shown to specifically accumulate in the inflamed joints of patients with rheumatoid arthritis and its levels correlate with other markers of inflammation. Our results indicate that resistin is a new and important member of the cytokine family with potent regulatory functions. Importantly, the identified properties of resistin make it a novel and interesting therapeutic target in chronic inflammatory diseases such as rheumatoid arthritis.
                Bookmark

                Author and article information

                Journal
                Front Immunol
                Frontiers in immunology
                Frontiers Media SA
                1664-3224
                1664-3224
                2014
                : 5
                Affiliations
                [1 ] Division of Rheumatology, Institute of Rheumatology and Affine Sciences, Catholic University of the Sacred Heart , Rome , Italy.
                Article
                10.3389/fimmu.2014.00576
                4227519
                25426122
                9a68869f-df08-4f39-99e4-cf34b941ee3c
                History

                adipokines,body mass index,inflammation,obesity,rheumatic diseases,rheumatoid arthritis

                Comments

                Comment on this article