9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage.

      The American Journal of Pathology
      Animals, Brain, metabolism, Brain Injuries, genetics, Caveolin 1, Cerebral Hemorrhage, Disease Models, Animal, Gene Deletion, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurons, Reactive Oxygen Species, Signal Transduction, Stroke

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracerebral hemorrhage (ICH) is a subtype of stroke with high rates of morbidity and mortality. Caveolin-1 (Cav-1) is the main structural protein of caveolae and is involved in regulating signal transduction and cholesterol trafficking in cells. Although a recent study suggests a protective role of Cav-1 in cerebral ischemia, its function in ICH remains unknown. In this study, we examined the role of Cav-1 and in a model of collagenase-induced ICH and in neuronal cultures. Our results indicate that Cav-1 was up-regulated in the perihematomal area predominantly in endothelial cells. Cav-1 knockout mice had smaller injury volumes, milder neurologic deficits, less brain edema, and neuronal death 1 day after ICH than wild-type mice. The protective mechanism in Cav-1 knockout mice was associated with marked reduction in leukocyte infiltration, decreased expression of inflammatory mediators, including macrophage inflammatory protein (MIP)-2 and cyclooxygenase (COX)-2, and reduced matrix metalloproteinase-9 activity. Deletion of Cav-1 also suppressed heme oxygenase-1 expression and attenuated reactive oxygen species production after ICH. Moreover, deletion or knockdown of Cav-1 decreased neuronal vulnerability to hemin-induced toxicity and reduced heme oxygenase (HO)-1 induction in vitro. These data suggest that Cav-1 plays a deleterious role in early brain injury after ICH. Inhibition of Cav-1 may provide a novel therapeutic approach for the treatment of hemorrhagic stroke. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article