Blog
About

60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The outbreak of West Nile virus infection in the New York City area in 1999.

      The New England journal of medicine

      isolation & purification, Adolescent, Adult, Age Factors, Aged, Aged, 80 and over, Antibodies, Viral, blood, cerebrospinal fluid, Brain, pathology, Child, Child, Preschool, Disease Outbreaks, statistics & numerical data, Female, Humans, Male, Middle Aged, New York City, epidemiology, Population Surveillance, Prognosis, Risk Factors, Severity of Illness Index, West Nile Fever, diagnosis, mortality, West Nile virus, immunology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In late August 1999, an unusual cluster of cases of meningoencephalitis associated with muscle weakness was reported to the New York City Department of Health. The initial epidemiologic and environmental investigations suggested an arboviral cause. Active surveillance was implemented to identify patients hospitalized with viral encephalitis and meningitis. Cerebrospinal fluid, serum, and tissue specimens from patients with suspected cases underwent serologic and viral testing for evidence of arboviral infection. Outbreak surveillance identified 59 patients who were hospitalized with West Nile virus infection in the New York City area during August and September of 1999. The median age of these patients was 71 years (range, 5 to 95). The overall attack rate of clinical West Nile virus infection was at least 6.5 cases per million population, and it increased sharply with age. Most of the patients (63 percent) had clinical signs of encephalitis; seven patients died (12 percent). Muscle weakness was documented in 27 percent of the patients and flaccid paralysis in 10 percent; in all of the latter, nerve conduction studies indicated an axonal polyneuropathy in 14 percent. An age of 75 years or older was an independent risk factor for death (relative risk adjusted for the presence or absence of diabetes mellitus, 8.5; 95 percent confidence interval, 1.2 to 59.1), as was the presence of diabetes mellitus (age-adjusted relative risk, 5.1; 95 percent confidence interval, 1.5 to 17.3). This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          West Nile fever--a reemerging mosquito-borne viral disease in Europe.

           Z Hubalek,  J Halouzka (1999)
          West Nile virus causes sporadic cases and outbreaks of human and equine disease in Europe (western Mediterranean and southern Russia in 1962-64, Belarus and Ukraine in the 1970s and 1980s, Romania in 1996-97, Czechland in 1997, and Italy in 1998). Environmental factors, including human activities, that enhance population densities of vector mosquitoes (heavy rains followed by floods, irrigation, higher than usual temperature, or formation of ecologic niches that enable mass breeding of mosquitoes) could increase the incidence of West Nile fever.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid detection of west nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay.

            The authors report on the development and application of a rapid TaqMan assay for the detection of West Nile (WN) virus in a variety of human clinical specimens and field-collected specimens. Oligonucleotide primers and FAM- and TAMRA-labeled WN virus-specific probes were designed by using the nucleotide sequence of the New York 1999 WN virus isolate. The TaqMan assay was compared to a traditional reverse transcriptase (RT)-PCR assay and to virus isolation in Vero cells with a large number ( approximately 500) of specimens obtained from humans (serum, cerebrospinal fluid, and brain tissue), field-collected mosquitoes, and avian tissue samples. The TaqMan assay was specific for WN virus and demonstrated a greater sensitivity than the traditional RT-PCR method and correctly identified WN virus in 100% of the culture-positive mosquito pools and 98% of the culture-positive avian tissue samples. The assay should be of utility in the diagnostic laboratory to complement existing human diagnostic testing and as a tool to conduct WN virus surveillance in the United States.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antigenic Relationships between Flaviviruses as Determined by Cross-neutralization Tests with Polyclonal Antisera

                Bookmark

                Author and article information

                Journal
                10.1056/NEJM200106143442401
                11407341

                Comments

                Comment on this article