44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women.

      Journal of Applied Physiology
      Adipose Tissue, physiology, Aged, Aging, Body Composition, Body Weight, Creatinine, urine, Elbow, Female, Humans, Knee, Male, Middle Aged, Muscles, anatomy & histology, Sex Factors

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The isokinetic strength of the elbow and knee extensors and flexors was measured in 200 healthy 45- to 78-yr-old men and women to examine the relationship between muscle strength, age, and body composition. Peak torque was measured at 60 and 240 degrees/s in the knee and at 60 and 180 degrees/s in the elbow by use of a Cybex II isokinetic dynamometer. Fat-free mass (FFM) was estimated by hydrostatic weighing in all subjects, and muscle mass (MM) was determined in 141 subjects from urinary creatinine excretion. FFM and MM were significantly lower (P less than 0.001) in the oldest group. Strength of all muscle groups at both testing speeds was significantly (P less than 0.006) lower (range 15.5-26.7%) in the 65- to 78- than in the 45- to 54-yr-old men and women. When strength was adjusted for FFM or MM, the age-related differences were not significant in all muscle groups except the knee extensors tested at 240 degrees/s. Absolute strength of the women ranged from 42.2 to 62.8% that of men. When strength was expressed per kilogram of MM, these gender differences were smaller and/or not present. These data suggest that MM is a major determinant of the age- and gender-related differences in skeletal muscle strength. Furthermore, this finding is, to a large extent, independent of muscle location (upper vs. lower extremities) and function (extension vs. flexion).

          Related collections

          Author and article information

          Comments

          Comment on this article