96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The overlap between vascular disease and Alzheimer's disease--lessons from pathology.

      1 ,
      BMC medicine
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent epidemiological and clinico-pathological data indicate considerable overlap between cerebrovascular disease (CVD) and Alzheimer's disease (AD) and suggest additive or synergistic effects of both pathologies on cognitive decline. The most frequent vascular pathologies in the aging brain and in AD are cerebral amyloid angiopathy and small vessel disease. Up to 84% of aged subjects show morphological substrates of CVD in addition to AD pathology. AD brains with minor CVD, similar to pure vascular dementia, show subcortical vascular lesions in about two-thirds, while in mixed type dementia (AD plus vascular dementia), multiple larger infarcts are more frequent. Small infarcts in patients with full-blown AD have no impact on cognitive decline but are overwhelmed by the severity of Alzheimer pathology, while in early stages of AD, cerebrovascular lesions may influence and promote cognitive impairment, lowering the threshold for clinically overt dementia. Further studies are warranted to elucidate the many hitherto unanswered questions regarding the overlap between CVD and AD as well as the impact of both CVD and AD pathologies on the development and progression of dementia.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Cerebral microvascular pathology in aging and Alzheimer's disease.

          The aging of the central nervous system and the development of incapacitating neurological diseases like Alzheimer's disease (AD) are generally associated with a wide range of histological and pathophysiological changes eventually leading to a compromised cognitive status. Although the diverse triggers of the neurodegenerative processes and their interactions are still the topic of extensive debate, the possible contribution of cerebrovascular deficiencies has been vigorously promoted in recent years. Various forms of cerebrovascular insufficiency such as reduced blood supply to the brain or disrupted microvascular integrity in cortical regions may occupy an initiating or intermediate position in the chain of events ending with cognitive failure. When, for example, vasoconstriction takes over a dominating role in the cerebral vessels, the perfusion rate of the brain can considerably decrease causing directly or through structural vascular damage a drop in cerebral glucose utilization. Consequently, cerebral metabolism can suffer a setback leading to neuronal damage and a concomitant suboptimal cognitive capacity. The present review focuses on the microvascular aspects of neurodegenerative processes in aging and AD with special attention to cerebral blood flow, neural metabolic changes and the abnormalities in microvascular ultrastructure. In this context, a few of the specific triggers leading to the prominent cerebrovascular pathology, as well as the potential neurological outcome of the compromised cerebral microvascular system are also going to be touched upon to a certain extent, without aiming at total comprehensiveness. Finally, a set of animal models are going to be presented that are frequently used to uncover the functional relationship between cerebrovascular factors and the damage to neural networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease.

            Vascular dysfunction has a critical role in Alzheimer's disease (AD). Recent data from brain imaging studies in humans and animal models suggest that cerebrovascular dysfunction may precede cognitive decline and onset of neurodegenerative changes in AD and AD models. Cerebral hypoperfusion and impaired amyloid beta-peptide (Abeta) clearance across the blood-brain barrier (BBB) may contribute to the onset and progression of dementia AD type. Decreased cerebral blood flow (CBF) negatively affects the synthesis of proteins required for memory and learning, and may eventually lead to neuritic injury and neuronal death. Impaired clearance of Abeta from the brain by the cells of the neurovascular unit may lead to its accumulation on blood vessels and in brain parenchyma. The accumulation of Abeta on the cerebral blood vessels, known as cerebral amyloid angiopathy (CAA), is associated with cognitive decline and is one of the hallmarks of AD pathology. CAA can severely disrupt the integrity of the blood vessel wall resulting in micro or macro intracerebral bleedings that exacerbates neurodegenerative process and inflammatory response and may lead to hemorrhagic stroke, respectively. Here, we review the role of the neurovascular unit and molecular mechanisms in vascular cells behind AD and CAA pathogenesis. First, we discuss apparent vascular changes, including the cerebral hypoperfusion and vascular degeneration that contribute to different stages of the disease process in AD individuals. We next discuss the role of the low-density lipoprotein receptor related protein-1 (LRP), a key Abeta clearance receptor at the BBB and along the cerebrovascular system, whose expression is suppressed early in AD. We also discuss how brain-derived apolipoprotein E isoforms may influence Abeta clearance across the BBB. We then review the role of two interacting transcription factors, myocardin and serum response factor, in cerebral vascular cells in controlling CBF responses and LRP-mediated Abeta clearance. Finally, we discuss the role of microglia and perivascular macrophages in Abeta clearance from the brain. The data reviewed here support an essential role of neurovascular and BBB mechanisms in contributing to both, onset and progression of AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study.

              To investigate the relation of diabetes to dementia, Alzheimer disease (AD), and vascular dementia (VaD), through analyses of incidence, mortality, and neuropathologic outcomes in a prospective population-based study of the oldest old. The Vantaa 85+ study included 553 residents living in the city of Vantaa, Finland, and aged ≥85 years on April 1, 1991. Survivors were reexamined in 1994, 1996, 1999, and 2001. Autopsies were performed in 291 persons who died during the follow-up (48% of total population). Diabetes was assessed according to self-report, medical record of physician-diagnosed diabetes, or use of antidiabetic medication. Macroscopic infarcts were identified from 1-cm coronal slices of cerebral hemispheres, 5-mm transverse brainstem slices, and sagittal cerebellum slices. Methenamine silver staining was used for β-amyloid, methenamine silver-Bodian staining for neurofibrillary tangles, and modified Bielschowsky method for neuritic plaques. Cox proportional hazards and multiple logistic regression models were used to analyze the association of diabetes with dementia and neuropathology, respectively. Diabetes at baseline doubled the incidence of dementia, AD, and VaD, and increased mortality. Individuals with diabetes were less likely to have β-amyloid (hazard ratio [HR] [95% confidence interval (CI)] was 0.48 [0.23-0.98]) and tangles (HR [95% CI] 0.72 [0.39-1.33]) but more likely to have cerebral infarcts (HR [95% CI] 1.88 [1.06-3.34]) after all adjustments. Elderly patients with diabetes develop more extensive vascular pathology, which alone or together with AD-type pathology (particularly in APOE ε4 carriers) results in increased dementia risk.
                Bookmark

                Author and article information

                Journal
                BMC Med
                BMC medicine
                Springer Science and Business Media LLC
                1741-7015
                1741-7015
                Nov 11 2014
                : 12
                Affiliations
                [1 ] Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK. j.attems@ncl.ac.uk.
                Article
                s12916-014-0206-2
                10.1186/s12916-014-0206-2
                4226890
                25385447
                8cfd4567-5c7b-446b-b8c6-7705a6f40e67
                History

                Comments

                Comment on this article