37
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thiazolidinediones are associated with a reduced risk of COPD exacerbations.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thiazolidinediones (TZDs) are oral antihyperglycemic medications that are selective agonists to peroxisome proliferator-activated receptor gamma and have been shown to have potent anti-inflammatory effects in the lung.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The steroid and thyroid hormone receptor superfamily.

          Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.

            The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. Expression of PPAR-gamma is an early and pivotal event in the differentiation of adipocytes. Several agents that promote differentiation of fibroblast lines into adipocytes have been shown to be PPAR-gamma agonists, including several prostanoids, of which 15-deoxy-delta-prostaglandin J2 is the most potent, as well as members of a new class of oral antidiabetic agents, the thiazolidinediones, and a variety of non-steroidal anti-inflammatory drugs (NSAIDs). Here we show that PPAR-gamma agonists suppress monocyte elaboration of inflammatory cytokines at agonist concentrations similar to those found to be effective for the promotion of adipogenesis. Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat.

              Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                International journal of chronic obstructive pulmonary disease
                Informa UK Limited
                1178-2005
                1176-9106
                2015
                : 10
                Affiliations
                [1 ] Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, CT, USA ; Division of Pulmonary and Critical Care, Yale University, New Haven, CT, USA.
                [2 ] VA Puget Sound Health Care System, Department of Veterans Affairs, University of Washington, USA ; Department of Health Services, University of Washington, USA.
                [3 ] VA Puget Sound Health Care System, Department of Veterans Affairs, University of Washington, USA ; Division of Pulmonary and Critical Care, University of Washington, USA.
                [4 ] VA Puget Sound Health Care System, Department of Veterans Affairs, University of Washington, USA ; Division of General Internal Medicine, University of Washington, USA.
                [5 ] Gilead Sciences, Inc., Seattle, WA, USA.
                Article
                copd-10-1591
                10.2147/COPD.S82643
                4536761
                26300638
                b9a07a18-7a96-4258-8aea-4a6596f30948
                History

                COPD exacerbation,cohort study,glitazones,inflammation,peroxisome proliferator-activated receptors

                Comments

                Comment on this article