36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia.

      Diabetes & Metabolism Journal
      Korean Diabetes Association
      Statin, Hyperlipoproteinemias, Hyperlipoproteinemia type II, Diabetic dyslipidemia, Diabetes mellitus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome.

          Insulin resistance is a key feature of the metabolic syndrome and often progresses to type 2 diabetes. Both insulin resistance and type 2 diabetes are characterized by dyslipidemia, which is an important and common risk factor for cardiovascular disease. Diabetic dyslipidemia is a cluster of potentially atherogenic lipid and lipoprotein abnormalities that are metabolically interrelated. Recent evidence suggests that a fundamental defect is an overproduction of large very low-density lipoprotein (VLDL) particles, which initiates a sequence of lipoprotein changes, resulting in higher levels of remnant particles, smaller LDL, and lower levels of high-density liporotein (HDL) cholesterol. These atherogenic lipid abnormalities precede the diagnosis of type 2 diabetes by several years, and it is thus important to elucidate the mechanisms involved in the overproduction of large VLDL particles. Here, we review the pathophysiology of VLDL biosynthesis and metabolism in the metabolic syndrome. We also review recent research investigating the relation between hepatic accumulation of lipids and insulin resistance, and sources of fatty acids for liver fat and VLDL biosynthesis. Finally, we briefly discuss current treatments for lipid management of dyslipidemia and potential future therapeutic targets.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ESC/EAS Guidelines for the management of dyslipidaemias The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetic dyslipidemia.

              Diabetic dyslipidemia is characterized by elevated fasting and postprandial triglycerides, low HDL-cholesterol, elevated LDL-cholesterol and the predominance of small dense LDL particles. These lipid changes represent the major link between diabetes and the increased cardiovascular risk of diabetic patients. The underlying pathophysiology is only partially understood. Alterations of insulin sensitive pathways, increased concentrations of free fatty acids and low grade inflammation all play a role and result in an overproduction and decreased catabolism of triglyceride rich lipoproteins of intestinal and hepatic origin. The observed changes in HDL and LDL are mostly sequence to this. Lifestyle modification and glucose control may improve the lipid profile but statin therapy mediates the biggest benefit with respect to cardiovascular risk reduction. Therefore most diabetic patients should receive statin therapy. The role of other lipid lowering drugs, such as ezetimibe, fibrates, omega-3 fatty acids, niacin and bile acid sequestrants is less well defined as they are characterized by largely negative outcome trials. This review examines the pathophysiology of diabetic dyslipidemia and its relationship to cardiovascular diseases. Management approaches will also be discussed.
                Bookmark

                Author and article information

                Journal
                26566492
                4641964
                10.4093/dmj.2015.39.5.353

                Statin,Hyperlipoproteinemias,Hyperlipoproteinemia type II,Diabetic dyslipidemia,Diabetes mellitus

                Comments

                Comment on this article