38
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Roles of ghrelin and leptin in the control of reproductive function.

      Neuroendocrinology
      Animals, Appetite Regulation, physiology, Eating, Energy Metabolism, Ghrelin, Humans, Hypothalamo-Hypophyseal System, Leptin, Neurosecretory Systems, Pituitary-Adrenal System, Reproduction

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reproductive function in mammals, defined as the capacity to generate viable male and female gametes, and to support pregnancy and lactation selectively in the female, is sensitive to the metabolic state of the organism. This contention, long assumed on the basis of intuitive knowledge, became formulated on a scientific basis only recently, with the identification of a number of neuroendocrine signals which crucially participate in the joint control of energy balance and reproduction. A paradigmatic example in this context is the adipocyte-derived hormone, leptin; a satiety factor which signals the amount of body energy (fat) stores not only to the circuits controlling food intake but also to a number of neuroendocrine axes, including the reproductive system. More recently, the reproductive dimension of another metabolic hormone, namely the orexigenic stomach-secreted peptide, ghrelin, has been disclosed by observations on its putative roles in the control of gonadal function and gonadotropin secretion. Of note, leptin and ghrelin have been proposed to act as reciprocal regulators of energy homeostasis. However, their potential interplay in the control of reproduction remains largely unexplored. Based on the comparison of the biological actions of leptin and ghrelin at different levels of the hypothalamic-pituitary-gonadal axis, reviewed in detail herein, we propose that, through concurrent or antagonistic actions, the leptin-ghrelin pair is likely to operate also as modulator of different reproductive functions, thereby contributing to the physiological integration of reproduction and energy balance. (c) 2007 S. Karger AG, Basel.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Deletion of ghrelin impairs neither growth nor appetite.

          Pharmacological studies show that ghrelin stimulates growth hormone release, appetite, and fat deposition, but ghrelin's physiological role in energy homeostasis has not been established. Ghrelin was also proposed to regulate leptin and insulin release and to be important for the normal function of stomach, heart, kidney, lung, testis, and placenta. To help determine a definable physiological role for ghrelin, we generated ghrelin-null mice. In contrast to predictions made from the pharmacology of ghrelin, ghrelin-null mice are not anorexic dwarfs; their size, growth rate, food intake, body composition, reproduction, gross behavior, and tissue pathology are indistinguishable from wild-type littermates. Fasting produces identical decreases in serum leptin and insulin in null and wild-type mice. Ghrelin-null mice display normal responses to starvation and diet-induced obesity. As in wild-type mice, the administration of exogenous ghrelin stimulates appetite in null mice. Our data show that ghrelin is not critically required for viability, fertility, growth, appetite, bone density, and fat deposition and not likely to be a direct regulator of leptin and insulin. Therefore, antagonists of ghrelin are unlikely to have broad utility as antiobesity agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KiSS-1 neurones are direct targets for leptin in the ob/ob mouse.

            Leptin is an adipocyte-derived hormone that acts on the hypothalamus to influence feeding, metabolism and reproduction, but the cellular and molecular targets for the action of leptin in the brain have yet to be fully elucidated. Kisspeptins are encoded by the Kiss1 gene, which is expressed in the hypothalamus and has been implicated in the neuroendocrine regulation of gonadotrophin-releasing hormone secretion. We tested the hypothesis that kisspeptin-expressing neurones are targets for leptin. First, we examined whether leptin regulates the expression of Kiss1 by comparing levels of KiSS-1 mRNA in the arcuate nucleus among groups of mice having different circulating levels of leptin: (i) wild-type (WT); (ii) leptin-deficient ob/ob; and (iii) ob/ob mice treated with leptin. All mice were castrated to control for endogenous concentrations of gonadal steroids. KiSS-1 mRNA was significantly reduced in ob/ob compared to WT mice and levels of KiSS-1 mRNA in ob/ob mice treated with leptin were increased, but not fully restored to that found in WT animals. Second, we performed double-label in situ hybridisation for KiSS-1 mRNA and the leptin receptor (Ob-Rb) mRNA and found that almost one-half (approximately 40%) of KiSS-1 mRNA-expressing cells in the arcuate nucleus expressed Ob-Rb mRNA. These results demonstrate that KiSS-1 neurones are direct targets for regulation by leptin and suggest that the reproductive deficits associated with leptin-deficient states may be attributable, in part, to diminished expression of Kiss1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition.

              Activation of the gonadotropic axis critically depends on sufficient body energy stores, and conditions of negative energy balance result in lack of puberty onset and reproductive failure. Recently, KiSS-1 gene-derived kisspeptin, signaling through the G protein-coupled receptor 54 (GPR54), has been proven as a pivotal regulator in the control of gonadotropin secretion and puberty. However, the impact of body energy status upon hypothalamic expression and function of this system remains unexplored. In this work, we evaluated the expression of KiSS-1 and GPR54 genes at the hypothalamus as well as the ability of kisspeptin-10 to elicit GnRH and LH secretion in prepubertal rats under short-term fasting. In addition, we monitored the actions of kisspeptin on food intake and the effects of its chronic administration upon puberty onset in undernutrition. Food deprivation induced a concomitant decrease in hypothalamic KiSS-1 and increase in GPR54 mRNA levels in prepubertal rats. In addition, LH responses to kisspeptin in vivo were enhanced, and its GnRH secretagogue action in vitro was sensitized, under fasting conditions. Central kisspeptin administration failed to change food intake patterns in animals fed ad libitum or after a 12-h fast. However, chronic treatment with kisspeptin was able to restore vaginal opening (in approximately 60%) and to elicit gonadotropin and estrogen responses in a model of undernutrition. In summary, our data are the first to show an interaction between energy status and the hypothalamic KiSS-1 system, which may constitute a target for disruption (and eventual therapeutic intervention) of pubertal development in conditions of negative energy balance.
                Bookmark

                Author and article information

                Comments

                Comment on this article