50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simulations of the Greenland Ice Sheet are carried out with a high-resolution version of the ice-sheet model SICOPOLIS for several global-warming scenarios for the period 1990-2350. In particular, the impact of surface-meltwater-induced acceleration of basal sliding on the stability of the ice sheet is investigated. A parameterization for the acceleration effect is developed for which modelled and measured mass losses of the ice sheet in the early 21st century agree well. The main findings of the simulations are: (i) the ice sheet is generally very susceptible to global warming on time-scales of centuries, (ii) surface-meltwater-induced acceleration of basal sliding leads to a pronounced speed-up of ice streams and outlet glaciers, and (iii) this ice-dynamical effect accelerates the decay of the Greenland Ice Sheet as a whole significantly, but not catastrophically, in the 21st century and beyond.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in the velocity structure of the Greenland Ice Sheet.

          Using satellite radar interferometry observations of Greenland, we detected widespread glacier acceleration below 66 degrees north between 1996 and 2000, which rapidly expanded to 70 degrees north in 2005. Accelerated ice discharge in the west and particularly in the east doubled the ice sheet mass deficit in the last decade from 90 to 220 cubic kilometers per year. As more glaciers accelerate farther north, the contribution of Greenland to sea-level rise will continue to increase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Satellite gravity measurements confirm accelerated melting of Greenland ice sheet.

            Using time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, we estimate ice mass changes over Greenland during the period April 2002 to November 2005. After correcting for the effects of spatial filtering and limited resolution of GRACE data, the estimated total ice melting rate over Greenland is -239 +/- 23 cubic kilometers per year, mostly from East Greenland. This estimate agrees remarkably well with a recent assessment of -224 +/- 41 cubic kilometers per year, based on satellite radar interferometry data. GRACE estimates in southeast Greenland suggest accelerated melting since the summer of 2004, consistent with the latest remote sensing measurements.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Application of a Polythermal Three-Dimensional Ice Sheet Model to the Greenland Ice Sheet: Response to Steady-State and Transient Climate Scenarios

              Ralf Greve (1997)
                Bookmark

                Author and article information

                Journal
                0905.2027

                Geophysics
                Geophysics

                Comments

                Comment on this article