39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thoughts on the current management of acute aluminum phosphide toxicity and proposals for therapy: An Evidence-based review.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of aluminum phosphide (ALP) toxicity cases are suicidal attempts. Despite advances in critical care medicine, the mortality rate of ALP remains very high. Unfortunately, knowledge on the toxicokinetics of ALP is very low. An obsolete idea was proposed that inhibition of complex IV of cytochrome C oxidase is responsible for multiorgan dysfunction. However, based on human studies, this effect might be insignificant. Thus, a novel idea proposes that the main mechanism might be vascular wall integrity disruption. The low frequency of acute toxicity and unanswered questions about the toxicokinetics and toxicodynamics has led to leaden advances of novel treatments. The aim of this review was to evaluate problems regarding current treatment protocols and propose new ideas based on updated information. For this purpose, we reviewed all available articles on the management of ALP poisoning published to date. Considering failure of conventional therapies on maintaining systolic blood pressure, correcting acid-base disturbances, and support cardiac function, the previous treatment protocols have been overruled. However, repudiate of conventional treatments in this deadly condition is not without penalties for the health-care provider. The introduction of new therapies including refuse of gastric lavage with water-soluble compounds, administration of a high molecular weight colloidal solution for fluid resuscitation and termination using sodium bicarbonate, and vasoactive agents has been prospected to improve patient survival. This protocol is in early clinical evaluation; nevertheless, it appears to improve patient's survival; hence, future randomized trials should be performed to support their effectiveness.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Aluminium and zinc phosphide poisoning.

          Aluminium and zinc phosphides are highly effective insecticides and rodenticides and are used widely to protect grain in stores and during its transportation. Acute poisoning with these compounds may be direct due to ingestion of the salts or indirect from accidental inhalation of phosphine generated during their approved use. Both forms of poisoning are mediated by phosphine which has been thought to be toxic because it inhibits cytochrome c oxidase. While phosphine does inhibit cytochrome C oxidase in vitro, the inhibition is much less in vivo. It has been shown recently in nematodes that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential. This failure of cellular respiration is likely to be due to a mechanism other than inhibition of cytochrome C oxidase. In addition, phosphine and hydrogen peroxide can interact to form the highly reactive hydroxyl radical and phosphine also inhibits catalase and peroxidase; both mechanisms result in hydroxyl radical associated damage such as lipid peroxidation. The major lethal consequence of phosphide ingestion, profound circulatory collapse, is secondary to factors including direct effects on cardiac myocytes, fluid loss, and adrenal gland damage. In addition, phosphine and phosphides have corrosive actions. There is usually only a short interval between ingestion of phosphides and the appearance of systemic toxicity. Phosphine-induced impairment of myocardial contractility and fluid loss leads to circulatory failure, and critically, pulmonary edema supervenes, though whether this is a cardiogenic or non-cardiogenic is not always clear. Metabolic acidosis, or mixed metabolic acidosis and respiratory alkalosis, and acute renal failure are frequent. Other features include disseminated intravascular coagulation, hepatic necrosis and renal failure. There is conflicting evidence on the occurrence of magnesium disturbances. There is no antidote to phosphine or metal phosphide poisoning and many patients die despite intensive care. Supportive measures are all that can be offered and should be implemented as required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A systematic review of aluminium phosphide poisoning.

            Every year, about 300,000 people die because of pesticide poisoning worldwide. The most common pesticide agents are organophosphates and phosphides, aluminium phosphide (AlP) in particular. AlP is known as a suicide poison that can easily be bought and has no effective antidote. Its toxicity results from the release of phosphine gas as the tablet gets into contact with moisture. Phosphine gas primarily affects the heart, lungs, gastrointestinal tract, and kidneys. Poisoning signs and symptoms include nausea, vomiting, restlessness, abdominal pain, palpitation, refractory shock, cardiac arrhythmias, pulmonary oedema, dyspnoea, cyanosis, and sensory alterations. Diagnosis is based on clinical suspicion, positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination with coconut oil and sodium bicarbonate, administration of charcoal, and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Moreover, acidosis can be treated with early intravenous administration of sodium bicarbonate, cardiogenic shock with fluid, vasopresor, and refractory cardiogenic shock with intra-aortic baloon pump or digoxin. Trimetazidine may also have a useful role in the treatment, because it can stop ventricular ectopic beats and bigeminy and preserve oxidative metabolism. This article reviews the epidemiological, toxicological, and clinical/pathological aspects of AlP poisoning and its management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An update on toxicology of aluminum phosphide

              Aluminum phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC), glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.
                Bookmark

                Author and article information

                Journal
                Indian J Crit Care Med
                Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine
                Medknow
                0972-5229
                0972-5229
                Dec 2016
                : 20
                : 12
                Affiliations
                [1 ] Department of Forensic Medicine and Clinical Toxicology, AJA Medical School, AJA University of Medical Sciences, Tehran, Iran.
                [2 ] Department of Forensic Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
                [3 ] Department of Forensic Medicine and Clinical Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran.
                Article
                IJCCM-20-724
                10.4103/0972-5229.195712
                5225774
                28149031
                cdd6ee06-8ded-4f7e-bf8a-c41624cd682c
                History

                Aluminum phosphide,new therapies,phosphine,toxicity
                Aluminum phosphide, new therapies, phosphine, toxicity

                Comments

                Comment on this article