Blog
About

333
views
0
recommends
+1 Recommend
1 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Ecological and Evolutionary Responses to Recent Climate Change

      Annual review of ecology, evolution, and systematics

      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 166

          • Record: found
          • Abstract: not found
          • Article: not found

          A globally coherent fingerprint of climate change impacts across natural systems.

          Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ecological responses to recent climate change.

            There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fingerprints of global warming on wild animals and plants.

              Over the past 100 years, the global average temperature has increased by approximately 0.6 degrees C and is projected to continue to rise at a rapid rate. Although species have responded to climatic changes throughout their evolutionary history, a primary concern for wild species and their ecosystems is this rapid rate of change. We gathered information on species and global warming from 143 studies for our meta-analyses. These analyses reveal a consistent temperature-related shift, or 'fingerprint', in species ranging from molluscs to mammals and from grasses to trees. Indeed, more than 80% of the species that show changes are shifting in the direction expected on the basis of known physiological constraints of species. Consequently, the balance of evidence from these studies strongly suggests that a significant impact of global warming is already discernible in animal and plant populations. The synergism of rapid temperature rise and other stresses, in particular habitat destruction, could easily disrupt the connectedness among species and lead to a reformulation of species communities, reflecting differential changes in species, and to numerous extirpations and possibly extinctions.
                Bookmark

                Author and article information

                Journal
                10.1146/annurev.ecolsys.37.091305.110100

                Comments

                Comment on this article